Jetzt registrieren

Anmeldung

Passwort verloren

Passwort vergessen? Geben Sie bitte Ihre Email-Adresse ein. Sie erhalten einen Link und ein neues Passwort per E-Mail erstellen.

Eintrag

Sie müssen sich anmelden Beitrag hinzufügen .

In Frage

Sie müssen sich anmelden, um eine Frage zu stellen.

Anmeldung

Jetzt registrieren

Willkommen bei Scholarsark.com! Ihre Anmeldung wird gewährt Ihnen Zugriff auf mehr Funktionen dieser Plattform. Sie können Fragen stellen, beitragspflichtig oder geben Antworten, Ansicht Profile anderer Nutzer und vieles mehr. Jetzt registrieren!

Mit diesen Nanopartikeln, Ein einfacher Urintest könnte eine bakterielle Lungenentzündung diagnostizieren: Die Ergebnisse könnten auch zeigen, ob Antibiotika die Infektion erfolgreich behandelt haben

Lungenentzündung, eine Atemwegserkrankung, die etwa tötet 50,000 Menschen in den Vereinigten Staaten jedes Jahr, kann durch viele verschiedene Mikroben verursacht werden, einschließlich Bakterien und Viren. Eine schnelle Erkennung einer Lungenentzündung ist entscheidend für eine wirksame Behandlung, especially in hospital-acquired cases which are often more severe. jedoch, current diagnostic approaches often take several days to return definitive results, making it harder for doctors to prescribe the right treatment.

A strong immune response can be seen in this immunofluorescence image of lung tissue infected with pneumonia where immune cells are stained green and red. Bild: Colin Buss

MIT researchers have now developed a nanoparticle-based technology that could be used to improve the speed of diagnosis. This type of sensor could also be used to monitor whether antibiotic therapy has successfully treated the infection, says Sangeeta Bhatia, John und Dorothy Wilson Professor für Gesundheitswissenschaften und Technologie und Elektrotechnik und Informatik und der leitenden Autor der Studie.

„Wenn die Symptome des Patienten gehen weg, dann annehmen, dass Sie das Medikament arbeitet. Aber wenn die Symptome des Patienten gehen nicht weg, dann würden Sie die Bakterien immer noch sehen wollen, wenn wächst. Wir haben versucht, dieses Problem zu beheben,“, Sagt Bhatia, der auch ein Mitglied des MIT-Koch-Instituts für Integrative Krebsforschung und Institut für Medizintechnik und Wissenschaft.

Graduate student Colin Buss and recent PhD recipient Jaideep Dudani are the lead authors of the paper, which appears online Nov. 29 in der Zeitschrift EBioMedicine. Reid Akana, an MIT senior, and Heather Fleming, director of research for Bhatia’s lab, are also authors of the paper.

Sensors in the body

Vor einigen Jahren, Bhatia and her colleagues developed a diagnostic approach that amplifies a signal from biomarkers already present in the body — specifically, enzymes called proteases, which chop up other proteins. The human genome encodes more than 500 different proteases, each of which targets different proteins.

The team developed nanoparticles coated with peptides (short proteins) that can be chopped up by certain proteases, such as those expressed by cancer cells. When these particles are injected into the body, they accumulate in tumors, if any are present, and proteases there chop the peptides from the nanoparticles. These peptides are eliminated as waste and can be detected by a simple urine test.

“We’ve been working on this idea that measuring enzyme activity could be a new way to peer inside the body,“, sagt Bhatia.

In recent studies, she has shown that this approach can be used to detect different types of cancers, including very small ovarian tumors, which could enable earlier diagnosis of ovarian cancer.

For their new study, the researchers wanted to explore the possibility of diagnosing infection by detecting proteases that are produced by microbes. They began with a species of bacteria called Pseudomonas aeruginosa, which can cause pneumonia and is a particularly common cause of hospital-acquired cases. Pseudomonas expresses a protease called LasA, so die Forscher, Nanopartikel mit Peptiden, die von LASA gespalten werden können.

Die Forscher entwickelten außerdem einen zweiten Nanopartikel-basierten Sensor, der die Host-Immunantwort auf eine Infektion überwachen. Diese Nanopartikel werden in Peptide abgedeckt, die durch eine Art von Protease genannt Elastase gespalten werden, die durch Immunzellen genannt Neutrophilen produziert.

Bei einigen Patienten mit Lungenentzündung, even if an antibiotic clears out the bacteria causing the infection, a chest X-ray may still show inflammation because neutrophils are still active. Using these two sensors together could reveal whether an antibiotic has cleared the infection, in cases where a chest X-ray still shows inflammation after treatment.

“The sensors can help you distinguish between whether there’s an infection and inflammation, versus inflammation and no infection,“, sagt Bhatia. “What we showed in the paper is that when you treat with the right antibiotic, the infection goes down but the inflammation persists.”

The researchers also showed that if they treated mice with an ineffective antibiotic, both bacteria levels and inflammation levels stayed high. This kind of test could help to reveal whether an antibiotic is working, in cases where a patient’s symptoms haven’t improved within a few days.

Diagnosing many infections

Für diese Studie, the researchers delivered the nanoparticles intravenously, but they are now working on a powdered version that could be inhaled.

Bhatia envisions that this approach could be used to determine whether a patient has bacterial or viral pneumonia, which would help doctors to decide if the patient should be given antibiotics or not. The definitive test, growing a bacterial culture from coughed up mucus, takes several days, so doctors base their decisions on the patients’ symptoms and X-ray imaging — a process that may not always be accurate.

To create a more comprehensive diagnostic, Bhatia’s lab is now working on adding peptides that could interact with proteases from other types of bacteria that cause pneumonia, as well as proteases that the host immune system produces in response to either viral or bacterial infection. The researchers are also working on sensors that could easily distinguish between active and dormant forms of tuberculosis.

Bhatia and others have started a company called Glympse Bio that has licensed the protease sensing technology and is now working on developing protease sensors for possible use in humans. Next year, they plan to begin a phase I clinical trial of a sensor that can detect liver fibrosis, an accumulation of scar tissue that can lead to cirrhosis.


Quelle: http://news.mit.edu, von Anne Trafton

Über Marie

Hinterlasse eine Antwort