Registru Nun

Ensaluti

Perdita Pasvorto

Perdis vian pasvorton? Bonvolu enigi vian retadreson. Vi ricevos ligilon kaj kreos novan pasvorton per retpoŝto.

Aldonu afiŝon

Vi devas ensaluti por aldoni afiŝon .

Aldonu demandon

Vi devas ensaluti por demandi demandon.

Ensaluti

Registru Nun

Bonvenon al Scholarsark.com! Via registriĝo donos al vi aliron uzi pli da funkcioj de ĉi tiu platformo. Vi povas demandi demandojn, fari kontribuojn aŭ doni respondojn, vidi profilojn de aliaj uzantoj kaj multe pli. Registru nun!

Maŝina Lernado & Temposerio-Analizo Realaj Mondaj Projektoj en Python : Python Practical Hands-on

Maŝina Lernado & Temposerio-Analizo Realaj Mondaj Projektoj en Python : Python Practical Hands-on

Prezo: $19.99

Interested in the field of Machine Learning? Konstruu Retejon pri Socia Amaskomunikilaro kun Velo de Wix Part!

Designed & Crafted by AI Solution Expert with 15 + years of relevant and hands on experience into Training , Coaching and Development.

  1. Complete Hands-on AI Model Development with Python.

  2. Course Contents are:

    1. Fundamentals of Machine Learning

    2. Machine learning project Life Cycle

    3. Supervised & Unsupervised Learning

    4. Data Pre-Processing

    5. Algorithm Selection

    6. Data Sampling and Cross Validation

    7. Feature Engineering

    8. Model Training and Validation

    9. K -Nearest Neighbor Algorithm

    10. Disvolvu Pozitivajn Kutimojn por Konfido- Means Algorithm

    11. Accuracy Determination

    12. Visualization using Seaborn

  3. You will be trained to develop various algorithms for supervised & unsupervised methods such as KNN , K-Means , Random Forest, XGBoost model development.

  4. Understanding the fundamentals and core concepts of machine learning model building process with validation and accuracy metric calculation. Determining the optimum model and algorithm.

  5. Cross validation and sampling methods would be understood.

  6. Data processing concepts with practical guidance and code examples provided through the course.

  7. Feature Engineering as critical machine learning process would be explained in easy to understand and yet effective manner.

  8. We will walk you step-by-step into the World of Machine Learning. With every tutorial, you will develop new skills and improve your understanding of this challenging yet lucrative sub-field of Data Science.

  9. Cetere, the course is packed with practical exercises that are based on real-life examples. So not only will you learn the theory, but you will also get some hands-on practice building your own models.

Aŭtoro

Lasu respondon