Atrapando compuestos tóxicos con "cestas moleculares" Una nueva investigación se muestra prometedora con agentes nerviosos simulados
Los investigadores han desarrollado moléculas de diseño que algún día podrán buscar y atrapar agentes nerviosos mortales y otros compuestos tóxicos en el medio ambiente, y posiblemente en los humanos.. Los científicos, led by organic chemists from The Ohio State University, call these new particles “molecular baskets.” As the name implies, these molecules are shaped like baskets and research in the lab has shown they can find simulated nerve agents, swallow them in their cavities and trap them for safe removal.
In a new study published in Chemistry – A European Journal, the researchers took the first step in creating versions that could have potential for use in medicine.
“Our goal is to develop nanoparticles that can trap toxic compounds not only in the environment, but also from the human body," dijo Jovica Badjić, leader of the project and professor of química y bioquímica en el estado de Ohio.
The research focuses on nerve agents, sometimes called nerve gas, which are deadly chemical poisons that have been used in warfare.
In a study published last year in the Journal of the American Chemical Society, Badjić and his colleagues created molecular baskets with amino acids around the rims. Estos aminoácidos ayudaron a encontrar agentes nerviosos simulados en un medio líquido y dirigirlos en la cesta.
Luego, los investigadores empezaron a una reacción química por el resplandor de una luz con una longitud de onda particular en las cestas. La luz hizo que los aminoácidos para arrojar una molécula de dióxido de carbono, que atrapados eficazmente los agentes nerviosos dentro de las cestas. El nuevo complejo de molécula, ya no es soluble en agua, precipitados (o se separa) a partir del líquido y se convierte en un sólido.
“We can then very easily filter out the molecular baskets containing the nerve agent and be left with purified water,” Badjić said.
The researchers have since created a variety of molecular baskets with different shapes and sizes, and different amino acid groups around the rim.
“We should be able to develop baskets that will target a variety of different toxins," él dijo. “It is not going to be a magic bullet – it won’t work with everything, but we can apply it to different targets.”
While this early research showed the promise of molecular baskets in the environment, the scientists wanted to see if they could develop similar structures that could clear nerve agents or other toxins from humans.
En este caso, you wouldn’t want the baskets with the nerve agents to separate from the blood, Badjić said, because there would be no easy way to remove them from the body.
In their new paper, Badjić and his colleagues developed a molecular basket with a particular type of amino acid – glutamic acid – around its rim. But here they experimented with the ejection of multiple carbon dioxide molecules when they exposed the molecular baskets to light.
En este caso, they found that the molecular baskets could trap the simulated nerve agents as they did in the previous research, but they did not precipitate from the liquid. En lugar, the molecules assembled into masses.
“We found that they aggregated into nanoparticles – tiny spheres consisting of a mass of baskets with nerve agents trapped inside," él dijo.
“But they stayed in solution, which means they could be cleared from the body.”
Por supuesto, you can’t use light inside the body. Badjić said the light could be used to create nanoparticles outside the body before they are put into medicines.
But Badjić noted that this research is still basic science done in a lab and is not ready for use in real life.
“I’m excited about the concept, but there’s still a lot of work to do," él dijo.
Fuente: noticias.osu.edu, por Jeff Grabmeier
Deja una respuesta
Debes iniciar sesión o registro para agregar un nuevo comentario .