Regístrate ahora

Iniciar sesión

Contraseña perdida

Perdiste tu contraseña? Por favor, introduzca su dirección de correo electrónico. Recibirá un enlace y se creará una nueva contraseña por correo electrónico.

Añadir mensaje

Debe iniciar sesión para añadir notas .

Añadir pregunta

Debe iniciar sesión para hacer una pregunta.

Iniciar sesión

Regístrate ahora

Bienvenido a Scholarsark.com! Su registro le conceda el acceso a la utilización de más características de esta plataforma. Puede hacer preguntas, hacer contribuciones o proporcionar respuestas, ver los perfiles de otros usuarios y mucho más. Regístrate ahora!

Respuestas y preguntas sobre la evaluación de habilidades de LinkedIn - R (Lenguaje de programación)

R has established itself as a leading programming language in the realm of data analysis and statistical computing, Reconocido por sus potentes capacidades y su extensa biblioteca de paquetes.. En esta guía completa, we’re delighted to present a curated collection of preguntas de evaluación de habilidades y respuestas para R.

Whether you’re a data scientist looking to enhance your analytical skills or a beginner eager to delve into the world of data science, this resource is tailored to help you become proficient in R y sus aplicaciones. Únase a nosotros mientras exploramos los conceptos centrales de R programming, including data manipulation, visualización, statistical modelling, y más, empowering you to unlock the full potential of this versatile language.

Q1. How does a matrix differ from a data frame?

  • A matrix may contain numeric values only.
  • A matrix must not be singular.
  • A data frame may contain variables that have different modes.
  • A data frame may contain variables of different lengths.

Q2. What value does this statement return?

unclass(as.Date("1971-01-01"))

  • 1
  • 365
  • 4
  • 12

Tercer trimestre. What do you use to take an object such as a data frame out of the workspace?

  • eliminar()
  • erase()
  • detach()
  • Eliminar()

Cuarto trimestre. Review the following code. What is the result of line 3?

xvect<-c(1,2,3)
xvect[2] <- "2"
xvect
  • [1] 1 2 3
  • [1] “1” 2 “3”
  • [1] “1” “2” “3”
  • [1] 7 9

Q5. The variable height is a numeric vector in the code below. Which statement returns the value 35?

  • height(length(height))
  • height[length(height)]
  • height[length[height]]
  • height(5)

Q6. En la imagen de abajo, the data frame is named rates. La declaración sd(rates[, 2]) returns 39. As what does R regard Ellen’s product ratings?

Imagen

  • sample with replacement
  • población
  • trimmed sample
  • muestra <– not sure

Q7. Which choice does R regard as an acceptable name for a variable?

  • Var_A!
  • \_VarA
  • .2Var_A
  • Var2_A

Q8. What is the principal difference between an array and a matrix?

  • A matrix has two dimensions, while an array can have three or more dimensions.
  • An array is a subtype of the data frame, while a matrix is a separate type entirely.
  • A matrix can have columns of different lengths, but an array’s columns must all be the same length.
  • A matrix may contain numeric values only, while an array can mix different types of values.

Q9. Which is not a property of lists and vectors?

  • tipo
  • longitud
  • attributes
  • escalar

Q10. En la imagen de abajo, the data frame on lines 1 mediante 4 is named StDf. State and Capital are both factors. Which statement returns the results shown on lines 6 y 7?

Imagen

  • StDf[1:2,-3]
  • StDf[1:2,1]
  • StDf[1:2,]
  • StDf[1,2,]

tecnicos. Which function displays the first five rows of the data frame named pizza?

  • BOF(pizza, 5)
  • primero(pizza, 5)
  • parte superior(pizza, 5)
  • cabeza(pizza, 5)

Q12. You accidentally display a large data frame on the R console, losing all the statements you entered during the current session. What is the best way to get the prior 25 statements back?

  • console(-25)
  • console(reverse=TRUE)
  • historia()
  • historia(max.show = 25)

P13. d.pizza is a data frame. It’s a column named temperature contains only numbers. If you extract temperature using the [] accessors, its class defaults to numeric. How can you access temperature so that it retains the class of data.frame?

> class( d.pizza[ , "temperature" ] )
> "numeric"
  • class( d.pizza( , "temperature" ) )
  • class( d.pizza[ , "temperature" ] )
  • class( d.pizza$temperature )
  • class( d.pizza[ , "temperature", drop=F ] )

Q14. What does c contain?

a <- c(3,3,6.5,8)
b <- c(7,2,5.5,10)
c <- a < b
  • [1] Yaya
  • [1] -4
  • [1] 4 -1 -1 2
  • [1] TRUE FALSE FALSE TRUE

P15. Review the statements below. Does the use of the dim function change the class of y, and if so what is y’s new class?

> y <- 1:9
> dim(y) <- c(3,3)
  • No, y’s new class is “formación”.
  • Sí, y’s new class is “matriz”.
  • No, y’s new class isvector”.
  • Sí, y’s new class isinteger”.

Q16. Qué es mydf$y en este código?

mydf <- data.frame(x=1:3, y=c("a","b","c"), stringAsFactors=FALSE)

  • lista
  • cadena
  • factor
  • character vector

P17. How does a vector differ from a list?

  • Vectors are used only for numeric data, while lists are useful for both numeric and string data.
  • Vectors and lists are the same thing and can be used interchangeably.
  • A vector contains items of a single data type, while a list can contain items of different data types.
  • Vectors are like arrays, while lists are like data frames.

P18. What statement shows the objects on your workspace?

  • list.objects()
  • print.objects()
  • getws()
  • ls()

Q19. What function joins two or more column vectors to form a data frame?

  • rbind()
  • cbind()
  • bind()
  • coerce()

P20. Review line 1 abajo. What does the statement in line 2 devolver?

1 mylist <- list(1,2,"C",4,5)
2 unlist(mylist)
  • [1] 1 2 4 5
  • “do”
  • [1] “1” “2” “do” “4” “5”
  • [1] 1 2 do 4 5

P21. What is the value of y in this code?

x <- NA
y <- x/1
  • Inf
  • Null
  • Yaya
  • ESO

P22. Two variable in the mydata data frame are named Var1 and Var2. How do you tell a bivariate function, such as cor.test, which two variables you want to analyze?

  • cor.test(Var1 ~ Var2)
  • cor.test(mydata$(Var1,Var2))
  • cor.test(mydata$Var1,mydata$Var2)
  • cor.test(Var1,Var2, mydata)

Q23. A data frame named d.pizza is part of the DescTools package. A statement is missing from the following R code and an error is therefore likely to occur. Which statement is missing?

library(DescTools)
deliver <- aggregate(count,by=list(area,driver), FUN=mean)
print(deliver)
  • attach(d.pizza)
  • summarize(deliver)
  • mean <- rbind(d.pizza,count)
  • deliver[!complete.cases(deliver),]

P24. How to name rows and columns in DataFrames and Matrices F in R?

  • data frame: names() and rownames() matriz: colnames() and row.names()
  • data frame: names() and row.names() matriz: dimnames() (not sure)
  • data frame: colnames() and row.names() matriz: names() and rownames()
  • data frame: colnames() and rownames() matriz: names() and row.names()

P25. Which set of two statements-followed by the cbind() function-results in a data frame named vbound?

  • ­
v1<-list(1,2,3)
v2<-list(c(4,5,6))
vbound<-cbind(v1,v2)
  • ­
v1<-c(1,2,3)
v2<-list(4,5,6))
vbound<-cbind(v1,v2)
  • ­
v1<-c(1,2,3)
v2<-c(4,5,6))
vbound<-cbind(v1,v2)
  • ­ none

Q26. ournames is a character vector. What values does the statement below return to Cpeople?

Cpeople <- ournames %in% grep("^C", ournames, value=TRUE)

  • records where the first character is a C
  • any record with a value containing a C
  • TRUE or FALSE, depending on whether any character in ournames is C
  • TRUE and FALSE values, depending on whether the first character in an ournames record is C

Q27. What is the value of names(v[4])?

v <- 1:3
names(v) <- c("a", "b", "c")
v[4] <- 4
  • “”
  • re
  • NULO
  • ESO

P28. Which of the following statements doesn’t yield the code output below. Review the following code. What is the result of line 3?

x <- c(1, 2, 3, 4)
Output: [1] 2 3 4
  • X[do(2, 3, 4)]
  • X[-1]
  • X[do(-1, 0, 0, 0)]
  • X[do(-1, 2, 3, 4)]

Q29. Given DFMerged <- merge(DF1, DF2) and the image below, how many rows are in DFMerged?

imagen

  • 6
  • 9
  • 3
  • 0

Q30. What does R return in response to the final statement?

x<-5:8
names(x)<-letters[5:8]
x
  • e f g h “5” “6” “7” “8”
  • 5 6 7 8
  • e f g h
  • e f g h 5 6 7 8

P31. How do you return “octubre” from x in this code?

x<-as.Date("2018-10-01")
  • attr()
  • meses(X)
  • as.month(X)
  • mes(X)

Q32. How will R respond to the last line of this code?

fact<-factor(c("Rep","Dem","Dem","Rep"))
fact
[1] Rep Dem Dem Rep
Levels: Rep Dem
fact[2]<-"Ind"
  • >
  • [,2]Indiana
  • invalid factor level, NA generated
  • Indiana

para celebrar el éxito y resaltar las áreas de oportunidad. What does R return?

StartDate<- as.Date("2020/2/28")
StopDate<- as.Date("2020/3/1")
StopDate-StartDate
  • “1970-01-02”
  • time difference of one day
  • time difference of two days
  • error in x-y: nonnumeric argument to binary operator

P34. What does the expression mtrx * mtrx hacer ?

> mtrx <- matrix( c(3,5,8,4), nrow= 2,ncol=2,byrow=TRUE)
> newmat <- mtrx * mtrx
  • it transpose mtrx
  • it premultiplies the current netwmat row by the newmat column.
  • it returns the results of a matrix multiplication
  • It squares each cell in mtrx
> newmat
     [,1] [,2]
[1,]    9   25
[2,]   64   16

# The `%*%` operator gives matrix multiplication
> mtrx %*% mtrx
     [,1] [,2]
[1,]   49   35
[2,]   56   56

entonces solo habrá falla si el defecto ocurre en cada capa y estas están todas alineadas al mismo tiempo. Which function in R combines different values into a single object?

  • En este curso aprenderás todo sobre Azure Web Apps()
  • concat()
  • contacto()
  • do()

Q36. Which file contains settings that R uses for all users of a given installation of R?

  • Rdefaults.site
  • Renviron.site
  • Rprofile.site
  • Rstatus.site

P37. Si mdf is a data frame, which statement is true ?

  • ncol(mdf) equals longitud(mdf).
  • The number of rows must equals the number of columns.
  • The legnth of any column in mdf may differ from any other column in mdf
  • All columns must have the same data type.

P38. A list can contain a list as an element. MyList has five columns, and the third column’s item is a list of three items. How do you put all seven values in MyList into a single vector?

  • vector(MyList, length = 7)
  • coerce(MyList, nrows = 1)
  • unlist(MyList)
  • coerce(MyList, nrows = 7)

P39. Which strings could be returned by the function ls(path =^V”)?

  • ANOVAData, anovadata
  • VisitPCA, VarX
  • VisitPCA, varx
  • Xvar, Yvar

Q40. StDf is a data frame. Based on this knowledge, what does this statement return?

StDf[, -1]
  • all but the first row and first column of StDf
  • all but the final column of StDf
  • all but the first column of StDf
  • only the first column of StDf

P41. Which statement enables you to interactively open a single file?

  • file.list()
  • file.select()
  • file.choose()
  • file.open()

P42. How are these data types alike: lógico, integer, numeric, y el carácter?

  • Each is a type of data frame.
  • Each is a type of atomic vector.
  • Each is a type of complex vector.
  • Each is a type of raw vector.

Q43. Lo que hace el MyMat[ ,3] subsetting operation return for this code?

MyMat = matrix(c(7, 9, 8, 6, 10, 12),nrow=2,ncol=3, byrow = TRUE)
  • :
[ ,3]
[1, ] 8
[2, ] 12
  • :
[1] 8 12
  • :
[1] 10 12
  • :
[ ,3]
[1, ] 10
[2, ] 12

Q44. What does the function power.anova.test devolver?

  • the probability of making a Type I error
  • the probability of not making a Type II error
  • the probability of making a Type II error
  • the probability of not making a Type I error

P45. Review the statement below. What is the effect of covariate:factor on the analysis?

result <- lm(outcome ~ covariate + factor + covariate:factor, data = testcoef)
  • It forces the intercepts of the individual regressions to zero.
  • It calls for the effect of the covariate within each level of the factor.
  • It calls for the effect of each variable from covariate to factor in testcoef.
  • It forces the covariate to enter the equation before the factor levels.
# Example call to demonstrate.  `Species` is a Factor.  Petal.Length, Petal.Width are numeric.
# see `help(formula)` for more details on the formula specification.  `:` is "effect modification" or "interaction"

> summary(lm(Petal.Length ~ Petal.Width + Species + Petal.Width:Species, data = iris))
...
Petal.Width:Speciesversicolor   1.3228     0.5552   2.382   0.0185 *
Petal.Width:Speciesvirginica    0.1008     0.5248   0.192   0.8480
...

Q46. A variable whose type is numeric can contain which items?

  • integers and real values
  • integers, Proceso de pasos que crea cambios poderosos en tu vida de forma natural, and raw values
  • real values only
  • integers, Proceso de pasos que crea cambios poderosos en tu vida de forma natural, and logical values

P47. What is the legitimate name of a data class in R?

  • property
  • integer
  • número
  • variant

Q48. How do you extract the values above the main diagonal from a square matrix named Rmat?

  • Rmat[upper.tri(Rmat)]
  • upper.triangular(Rmat)
  • upper.tri(Rmat)
  • upper.diag(Rmat)

Q49. x is a vector of type integer, as shown on line 1 abajo. What is the type of the result returned by the statement > mediana(X)?

x <- c(12L, 6L, 10L, 8L, 15L, 14L, 19L, 18L, 23L, 59L)

  • numeric
  • integer
  • soltero
  • doble

Q50. A list named a is created using the statement below. Which choice returns TRUE?

a <- list("10", TRUE, 5.6)

  • is.list(una[1])
  • is.numeric(una[1])
  • is.logical(una[1])
  • is.character(una[1])

P51. How do you obtain the row numbers in a data frame named pizza for which the value of pizza$delivery_min is greater than or equal to 30?

  • :
late_delivery <- pizza$delivery_min >= 30
index_late <- index(late_delivery)
index_late
  • :
late_delivery <- pizza$delivery_min >= 30
rownum_late <- rownum(late_delivery)
rownum_late
  • :
late_delivery <- pizza$delivery_min >= 30
which_late <- which(late_delivery)
which_late
  • :
late_delivery <- pizza$delivery_min >= 30
late <- piza$late_delivery
pizza$late

Q52. Which function returns [1] TRUE FALSE TRUE?

indat <- c("Ash Rd","Ash Cir","Ash St")

  • grepl(“[Rd|Ave|Dr|S t]”, indat)
  • grepl(“Rd|Ave|Dr|S t”, indat)
  • grepl(“Rd,Ave,Dr,S t”, indat)
  • grepl(“[Rd],[Ave],[Dr],[S t]”, indat)

Q53. Which statement returns the fourth row of a data frame named pez?

  • pez[4, ]
  • pez( ,4)
  • pez(4, )
  • pez{4, }

Q54. ¿Cuál es el valor de csum?

a <- c(1.2, 2, 3.5, 4)
b <- c(1.2, 2.2, 3.5, 4)
csum <-sum(a == b)
  • 8
  • 3
  • 0.2
  • 21.6

Q54. A list named una is created using the statement below. Which choice returns TRUE?

a <- list("10", TRUE, 5.6)
  • is.list(una[1])
  • is.numeric(una[1])
  • is.logical(una[1])
  • is.character(una[1])

Q55. What is the result of these three lines of code?

vect1 <- c(1:4)
vect2 <- c(1:2)
vect1 * vect2
  • [1] 1 4 3 8
  • ERROR
  • [1] 1 2 3 4 1 2
  • [1] 1 2 3 4 2 4 6 8

P56. Which choice returns [1] “2019-09-28”?

  • formato(as.POSIXct(“Sep-28-2019 07:54:31 AM”,format=’%b%d%Y’))
  • as.POSIXlt(“Sep-28-2019 07:54:31 AM”,format=’%b-%d-%Y’)
  • as.POSIXct(“Sep-28-2019 07:54:31 AM UTC”)
  • formato(as.POSIXct(“Sep-28-2019 07:54:31 AM UTC”,format=’%b-%d-%Y’))

P57. The variable potus is a character vector, as shown in line 1 abajo. Wich statement returns the results shown?

1 potus <- c("GHW Bush", "Clinton", "GW Bush", "Obama")

Results: [1] "GHW BUsh" "Clinton" "Obama"
  • potus[-“GW Bush”]
  • potus[1:2 4]
  • potus[-3]
  • potus[1,2,4]

P58. A data frame contains two factor -fact1 and fact2- and a numerical outcome variable. Which statement returns results that do NOT include an interaction term?

  • anova(lm(outcome ~ fact1 : fact2))
  • anova(lm(outcome ~ fact1 * fact2))
  • anova(lm(outcome ~ fact1 + fact2))
  • anova(lm(outcome ~ fact1 + fact2 + fact1 : fact2))

Q59. Review line 1 abajo. What does the statement on line 2 devolver?

1 myvect <- c(-2,-1,0)
2 as.logical(myvect)
  • [1]-2 -1 0
  • [1]TRUE TRUE FALSE
  • [1]FALSE FALSE TRUE
  • [1]NA NA NA

Q60. Which option setting can cause difficulty if you want to add to a variable’s possible values after you have designed an object’s initial data structure?

  • ()OPTIONS(colnames(X)<-NULO)
  • ()OPTIONS(max.print=5)
  • ()OPTIONS(continue=”… “,
  • ()OPTIONS(stringAsFactors=TRUE

Q61. In this image below, the data frame on lines 1 mediante 4 is named StDf. StDf contains no factors. Why does statement on line 6 devolver “personaje” while the statement on line 7 returnsdata.frame”?

imagen

  • Each value in the first row is a character value, but the values in the third column include both character and numeric values.
  • By specifying the final row, 3, and no column specified, StDf[3, ] calls for the complete structure.
  • Columns in a data frame are vectors generally containing a single type of data. Rows in a data frame are lists, but they belong to a structure that has multiple rows: the data frame.
  • Each value in the first column is a character value, but the values in the third row include both character and numeric values.

P62. Review line 1. What does the statement on line 3 devolver?

mtrx <- matrix(1:6, 3, 2)

mtrx[, -1]

imagen

  • ­

  • ­

  • ­

  • [1] 4 5 6

Q63. Why does sum(!is.na(pizza$week)) return the number of rows with valid, non-NA values in the column named week?

  • The exclamation point in !is.na(pizza$week) reverses the meaning of the test it precedes.
  • !is.na(pizza$week) counts the number of NA values in the column.
  • !is.na(pizza$week) returns a vector of TRUE/FALSE values, in which TRUE is treated as a 0 and FALSE as a 1.
  • !is.na(pizza$week) counts the number of non-missing values in the column.

Q64. How do you get documentation of an installed and loaded R package named dplyr and packages with dplyr as an alias?

  • ayuda(dplyr)
  • ? dplyr
  • ?? dplyr
  • Press the F1 key.

Q65. En la imagen de abajo, the data frame named iris includes a numeric vector named Petal.Length. Do the functions labeled Pair 1 and Pair 2 return the same information?

imagen

  • No, both the length and the class of the returned structures are different.
  • Sí, both pairs of statements return an object with the same length and class.
  • No, the length is the same but the class is different.
  • No, the class is the same but the length is different.

Q66. los _ for R are the main feature that make it different from the original S language.

  • closure rules
  • scoping rules
  • environment rules
  • Ninguno de los anteriores

referencia

Q67. Which of the following is a base package for R programming ?

  • herramientas
  • util
  • lang
  • Todo lo anterior

referencia

Autor

  • Helen Bassey

    Hola, I'm Helena, un escritor de blogs apasionado por publicar contenidos interesantes en el nicho de la educación. Creo que la educación es la clave para el desarrollo personal y social., y quiero compartir mi conocimiento y experiencia con estudiantes de todas las edades y orígenes.. en mi blog, Encontrarás artículos sobre temas como estrategias de aprendizaje., educación en línea, orientación profesional, y más. También agradezco comentarios y sugerencias de mis lectores., Así que no dudes en dejar un comentario o contactarme en cualquier momento.. Espero que disfrutes leyendo mi blog y lo encuentres útil e inspirador..

    Ver todas las entradas

Acerca de Helen Bassey

Hola, I'm Helena, un escritor de blogs apasionado por publicar contenidos interesantes en el nicho de la educación. Creo que la educación es la clave para el desarrollo personal y social., y quiero compartir mi conocimiento y experiencia con estudiantes de todas las edades y orígenes.. en mi blog, Encontrarás artículos sobre temas como estrategias de aprendizaje., educación en línea, orientación profesional, y más. También agradezco comentarios y sugerencias de mis lectores., Así que no dudes en dejar un comentario o contactarme en cualquier momento.. Espero que disfrutes leyendo mi blog y lo encuentres útil e inspirador..

Deja una respuesta