Regístrate ahora

Iniciar sesión

Contraseña perdida

Perdiste tu contraseña? Por favor, introduzca su dirección de correo electrónico. Recibirá un enlace y se creará una nueva contraseña por correo electrónico.

Añadir mensaje

Debe iniciar sesión para añadir notas .

Iniciar sesión

Regístrate ahora

Bienvenido a Scholarsark.com! Su registro le conceda el acceso a la utilización de más características de esta plataforma. Puede hacer preguntas, hacer contribuciones o proporcionar respuestas, ver los perfiles de otros usuarios y mucho más. Regístrate ahora!

Seis pies debajo: El suelo profundo puede contener gran parte del carbono de la Tierra

Una cuarta parte del carbono retenido por el suelo está ligado a minerales hasta seis pies debajo de la superficie, un investigador de la Universidad Estatal de Washington ha encontrado. El descubrimiento abre una nueva posibilidad de tratar con el elemento a medida que continúa para calentar la atmósfera de la Tierra.

uno de enganche: La mayor parte de ese carbono se concentra en las profundidades de los bosques húmedos del mundo, y no van a secuestrar tanto que las temperaturas globales siguen aumentando.

Marc Kramer, an associate professor of environmental chemistry at WSU Vancouver, se basó en datos nuevos de los suelos de todo el mundo para describir cómo el agua se disuelve el carbono orgánico y lo lleva profundamente en el suelo, where it is physically and chemically bound to minerals. Kramer and Oliver Chadwick, a soil scientist at the University of California Santa Barbara, estimate that this pathway is retaining about 600 billion metric tons, or gigatons, of carbon. That’s more than twice the carbon added to the atmosphere since the dawn of the Industrial Revolution.

Scientists still need to find a way to take advantage of this finding and move some of the atmosphere’s extra carbon underground, but Kramer says the soils can easily retain more. Para principiantes, a new understanding of the pathway is “a major breakthrough” in our understanding of how carbon goes underground and stays there, él dijo.

Closeup of Kramer.
Kramer

“We know less about the soils on Earth than we do about the surface of Mars,” said Kramer, whose work appears in the journal Nature Climate Change. “Before we can start thinking about storing carbon in the ground, we need to actually understand how it gets there and how likely it is to stick around. This finding highlights a major breakthrough in our understanding.”

The study is the first global-scale evaluation of the role soil plays in dissolved organic carbon and the minerals that help store it. Kramer analyzed soils and climate data from the Americas, Nueva Caledonia, Indonesia and Europe, and drew from more than 65 sites sampled to a depth of six feet from the National Science Foundation-funded National Ecological Observatory Network.

“These data show what kind of big science you can do when you have a national ecological observatory,” Kramer said. Por una cosa, they let the researchers construct a global-scale map for this pathway of soil carbon accumulation.

Comparing different ecosystems, Kramer saw that moist environments sequestered far more carbon than dry ones. In desert climates, where rain is scarce and water easily evaporates, reactive minerals retain less than 6 percent of the soil’s organic carbon. Dry forests are not much better. But wet forests can have as much as half their total carbon bound up by reactive minerals.

Wet forests tend to be more productive, with thick layers of organic matter from which water will leach carbon and transport it to minerals as much as six feet below the surface.

“This is one of the most persistent mechanisms that we know of for how carbon accumulates,” Kramer said.

But while climate change is unlikely to directly affect the deep mineral-bound carbon, it can influence the pathway by which the carbon is buried. That is because the delivery system depends on water to leach carbon from roots, fallen leaves and other organic matter near the surface and carry it deep into the soil, where it will attach to iron- and aluminum-rich minerals eager to form strong bonds.

If temperatures near the surface warm, there can be less water moving through soils even if rainfall amounts stay the same or increase. More of the water that does fall can be lost to evaporation and plant respiration, making less water available to move carbon for long-term storage.


Fuente: news.wsu.edu, por Eric Sorensen

Acerca de Marie

Deja una respuesta

Brillantemente seguro y Centrado en el estudiante Plataforma de aprendizaje 2021