Study of How Brain Interprets Visual Cues Could Aid Treatment of Psychiatric Disorders
For people living with attention deficit disorder, their struggles are not a matter of refusing to pay attention for a long period of time. En lugar, it might be that these people have difficulty monitoring their own attention — and maintaining it — so they can stay on task. Al menos, that’s a hypothesis a Pittsburgh-based research duo wants to study by looking at the brain’s interaction with visual stimuli.
Their research aims to show how the sensory environment and a person’s mental state at a specific point in time combine to affect perception and interpretation of the outside world.
“We have the ability to tap into that state of mind with our approach and see if we can better understand how our perception works when we take the state of mind into account," dijo Matt Smith, associate professor of ophthalmology at the University of Pittsburgh School of Medicine.
Smith and Byron Yu, an associate professor of electrical and computer engineering and biomedical engineering at Carnegie Mellon University, will use brain-computer interfaces to observe visual neurons — nerve cells that receive signals traveling from the eyes.
“Our goal is to show what these types of brain-computer interfaces can achieve outside of the motor system,” Smith said. “We’re trying to test the limits of what we can modify in our neural activity. We can try to teach our subjects how to control their own internal state.”
Asi que, what does perception have to do with paying attention in class or at work? Smith said attention is one of the most well-known internal states that affects perception.
“If we pay attention or not, it can cause us to notice or miss important details in the world," él dijo. “We try to teach the subject to directly access the internal states.”
Smith dijo que este es un enfoque importante, porque muchos psiquiátrica, trastornos neurológicos y de comportamiento como el trastorno por déficit de atención se deben a problemas en el control de los estados internos, en lugar de problemas en los procesos sensoriales, como un problema de la retina en el ojo.
Smith y Yu han colaborado antes, pero este estudio se fusiona antecedentes y enfoques ambos investigadores han, con el área de la especialidad de Smith estar en la electrofisiología y la experimentación y la experiencia de Yu en interfaces cerebro-ordenador y métodos computacionales.
One place of inspiration for their study comes from an unlikely source: people who are paralyzed and are able to move cybernetic limbs through thinking.
“When they think about moving, even though they can’t actually move, it is possible to listen in to their motor neurons and use that to guide a computer cursor or a robotic arm,” Smith said.
Smith said the project takes the idea that thinking can lead to physical movement in robotic or computer-based systems and applies it to the sensory and cognitive domains. Si tiene éxito, it may aid in treatment of more cognitive disorders such as attention deficit disorder and in recovery of function after brain injury.
To accomplish this, the researchers will try to make animals control their brains in a way that maximizes their attention.
“We teach animals to expect a visual stimulus, like a flash, that will appear at a certain location in space,” Smith said. “We can show through their behavior that they’re paying attention to the visual flash and listen in on their neurons at the same time. Entonces, we can build an interface to give them feedback and observe how it affects their attention.”
These target trainings offer hope that in the future, people may be able to be taught how to focus more in an academic environment and in daily life.
Fuente: www.pittwire.pitt.edu, by Amerigo Allegretto
Deja una respuesta
Debes iniciar sesión o registro para agregar un nuevo comentario .