S'inscrire maintenant

S'identifier

Mot de passe perdu

Mot de passe perdu? S'il vous plaît entrer votre adresse e-mail. Vous recevrez un lien et créez un nouveau mot de passe par e-mail.

Ajouter un enregistrement

Vous devez vous connecter pour ajouter après .

Ajouter une question

Vous devez vous connecter pour poser une question.

S'identifier

S'inscrire maintenant

Bienvenue sur Scholarsark.com! Votre inscription vous donnera accès à l'utilisation de plus de fonctionnalités de cette plate-forme. Vous pouvez poser des questions, apporter des contributions ou de fournir des réponses, Voir les profils d'autres utilisateurs et bien plus encore. inscrire maintenant!

Apprentissage automatique pratique: Projets du monde réel,Études de cas

Apprentissage automatique pratique: Projets du monde réel,Études de cas

Prix: $59.99

Dans ce tutoriel, you will discover how to develop and evaluate a model for the imbalanced adult income classification dataset.

After completing this tutorial, you will know:

  • How to load and explore the dataset and generate ideas for data preparation and model selection.

  • How to systematically evaluate a suite of machine learning models with a robust test harness.

  • How to fit a final model and use it to predict class labels for specific cases.

Many binary classification tasks do not have an equal number of examples from each class, par exemple. the class distribution is skewed or imbalanced.

A popular example is the adult income dataset that involves predicting personal income levels as above or below $50,000 per year based on personal details such as relationship and education level. There are many more cases of incomes less than $50K than above $50K, although the skew is not severe.

Auteur

Laisser une réponse