Iscriviti ora

Accesso

Password dimenticata

Hai perso la tua password? Inserisci il tuo indirizzo email. Riceverai un link e verrà creata una nuova password via e-mail.

Add postale

Devi effettuare il login per aggiungere post .

Aggiungere domanda

Devi effettuare il login per fare una domanda.

Accesso

Iscriviti ora

Benvenuti a Scholarsark.com! La tua registrazione ti darà accesso a utilizzare più funzionalità di questa piattaforma. È possibile porre domande, contributi o fornire risposte, Guarda i profili di altri utenti e molto altro ancora. Iscriviti ora!

Introduzione all'apprendimento automatico nei quiz sull'analisi sportiva & Risposte – Coursera

Step into the dynamic world of sports analytics with engaging quizzes and expert answers on Introduction to Machine Learning in Sports Analytics. Discover how machine learning algorithms are revolutionising the analysis and exploitation of sports data to provide insights into player performance, game strategies and more. These quizzes will serve as a gateway to understanding the application of machine learning in sports, from predictive modelling to performance optimisation.

Whether you are a sports enthusiast fascinated by the intersection of computer science and sports or a data analyst looking to delve into the world of sports analytics, this collection offers valuable insights into the power of macchina apprendimento to transform the sports industry. Join us on a journey of data-driven discovery as we explore the fusion of macchina learning and sports analytics to open up new possibilities for understanding and improving sports performance.

Quiz 1: Incarico 1

Q1. There are a few main branches of machine learning. When you have the label for your training data and you want to build a model which predicts for that label, what kind of machine learning is that?

  • Supervised
  • Reinforcement
  • Artificial
  • Unsupervised

Q2. What is a minority class of data?

  • Labels which are poorly chosen
  • Labels which are easy to predict
  • Labels about demographics of players
  • Labels you have fewer instances for

Q3. Which data do you make available to the machine learning algorithm to learn from?

  • Training data
  • Validation data
  • Evaluation data
  • Testing data

Q4. In my model of the NHL game data I had to deal with the introduction of a new team, the Vegas Golden Knights. For this team I just naively decided to fill the historical stats with just mean values from the other teams. But assume that I took a different strategy, and dropped all games where the Vega Gold Knights played. What is the new metric of accuracy for my model after dropping Gold Knights games from the data?

Per questa domanda, don’t change the training set size, and the testing set size will shrink automatically. Put your answer in to two decimal places.

Inserisci la risposta qui

Settimana 2: Introduction to Machine Learning in Sports Analytics Quiz Answers

Quiz 1: Incarico 2

Q1. In a two class linear SVM, what is the street?

  • A random walk of the support vectors
  • A polynomial equation which best represents the classes
  • The two features which create our SVM
  • The hyperplane which separates two classes

Q2. Which function do you call in order to build a model from data in sklearn?

  • modello()
  • treno()
  • costruire()
  • fit()

Q3. What is the purpose of cross validation?

  • To balance data as we get more classes (etichette) to predict
  • To get a better estimate as to the accuracy of the final model
  • To build a more accurate model
  • To build a confusion matrix

Q4. Taking a look at the baseball data where we made a multiclass prediction, create a confusion matrix and study it. Which class do we regularly over-predict the most? Provide the label of this class as two capitalized characters (es. A PARTIRE DAL).

Inserisci la risposta qui

Q5. Will this class have a higher precision or recall score?

  • richiamare
  • preceision

Settimana 3: Introduction to Machine Learning in Sports Analytics Quiz Answers

Quiz 1: Incarico 3

Q1. What does it mean for a set of observations to be “pure”?

  • It’s imbalanced with respect to class
  • It’s balanced with respect to class
  • It’s about a Canadian team or player
  • It’s homogenous with respect to class

Q2. For each split, how many features does CART split on at once?

  • 1
  • Any number
  • Tutti
  • 0

Q3. What kind of prediction target does an M5P tree make?

  • A label
  • A numeric value
  • An array

Q4. After a descision tree splits on a feature, will it split again on that feature in a subtree?

  • No
  • Arte del Circolo Principale

Q5. Go back to our NHL game outcome prediction task in observations.csv. Apply a CART DecisionTree to this problem with GridSearchCV over the following parameter space:

parameters={‘max_depth’:(3,4,5,6,7,8,9,10),
‘min_samples_leaf’:(1,5,10,15,20,25)}

Set your cv=10, use accuracy as your metric, and drop the Vegas Golden Knights. Set your training set to be observations[0:800] and your validation set to observations[800:], and use my favorite number for the randomization state. What level of accuracy does your model produce (to four decimal places)?

Inserisci la risposta qui

Q6. Which set of parameters are the best in the previous model? Input your parameters as a string value of the max_depth:min_samples_leaf, es. 5:20 if GridSearchCV found a max_depth=5 and min_samples_leaf=20 the correct answer.

Inserisci la risposta qui

Settimana 4: Introduction to Machine Learning in Sports Analytics Quiz Answers

Quiz 1: Incarico 4

Q1. If you were making a classifier using two features and you visualized your data and saw it was separated by roughly a 45 grado, which classifier would you start with first for best results?

  • SVM
  • Confusion Matrix
  • M5P Tree
  • Decision Tree

Q2. What is the purpose of GridSearch?

  • It is a regression mechanism using decision trees.
  • It improves our understanding of the confusion matrix.
  • It helps to prune leaves from large trees.
  • It provides a hyperparameter tuning method.

Q3. Which kind of ensemble method creates multiple classifiers for you with random subsets of data?

  • Boosting
  • Bagging
  • Voto
  • Stacking

Q4. Which kind of modelers can be ensembled together into a voting ensemble for the boxing punch detection problem (choose all that apply)?

Note that the boxing punch detection problem is a classification task.

  • Decision Trees
  • SVMs
  • Polynomial SVMs
  • Linear Regression
  • Logistic Regression
  • Cross Validation
  • Bagging Classifier
  • Gradient Boosting Classifier
  • Packaging Classifier

Autore

  • Helen Bassey

    Ciao, Sono Elena, uno scrittore di blog appassionato di pubblicare contenuti approfonditi nella nicchia dell'istruzione. Credo che l’istruzione sia la chiave dello sviluppo personale e sociale, e voglio condividere le mie conoscenze ed esperienze con studenti di tutte le età e background. Sul mio blog, troverai articoli su argomenti come le strategie di apprendimento, formazione in linea, orientamento professionale, e altro ancora. Accolgo con piacere anche feedback e suggerimenti da parte dei miei lettori, quindi sentiti libero di lasciare un commento o contattarmi in qualsiasi momento. Spero che ti piaccia leggere il mio blog e che lo trovi utile e stimolante.

    Visualizza tutti gli articoli

Di Helen Bassey

Ciao, Sono Elena, uno scrittore di blog appassionato di pubblicare contenuti approfonditi nella nicchia dell'istruzione. Credo che l’istruzione sia la chiave dello sviluppo personale e sociale, e voglio condividere le mie conoscenze ed esperienze con studenti di tutte le età e background. Sul mio blog, troverai articoli su argomenti come le strategie di apprendimento, formazione in linea, orientamento professionale, e altro ancora. Accolgo con piacere anche feedback e suggerimenti da parte dei miei lettori, quindi sentiti libero di lasciare un commento o contattarmi in qualsiasi momento. Spero che ti piaccia leggere il mio blog e che lo trovi utile e stimolante.

Lascia un commento