Zarejestruj się teraz

Zaloguj sie

Zgubione hasło

Zgubiłeś swoje hasło? Wprowadź swój adres e-mail. Otrzymasz link i utworzysz nowe hasło e-mailem.

Dodaj post

Musisz się zalogować, aby dodać post .

Dodaj pytanie

Aby zadać pytanie, musisz się zalogować.

Zaloguj sie

Zarejestruj się teraz

Witamy na stronie! Twoja rejestracja zapewni Ci dostęp do większej liczby funkcji tej platformy. Możesz zadawać pytania, wnosić wkład lub udzielać odpowiedzi, przeglądaj profile innych użytkowników i wiele więcej. Zarejestruj się teraz!

Technologia zaginania światła zmniejsza kilometrowy system promieniowania do skali milimetrowej

ten DESY accelerator facility in Hamburg, Niemcy, ciągnie się kilometrami, aby pomieścić cząstkę wykonującą kilometrowe okrążenia z prędkością bliską prędkości światła. Teraz naukowcy zmniejszyli takie urządzenie do rozmiarów chipa komputerowego.

A University of Michigan team in collaboration with Purdue University created a new device that still accommodates speed along circular paths, but for producing lower light frequencies in the terahertz range of applications such as identifying counterfeit dollar bills or distinguishing between cancerous and healthy tissue.

In order to get light to curve, you have to sculpt every piece of the light beam to a particular intensity and phase, and now we can do this in an extremely surgical way,” powiedział Roberto Merlin, the University of Michigan’s Peter A. Franken Collegiate Professor of Physics.

The work is published in the journal Science. Ostatecznie, this device could be conveniently adapted for a computer chip.

The more terahertz sources we have, lepiej. This new source is also exceptionally more efficient, let alone that it’s a massive system created at the millimeter scale,” powiedział Vlad Shalaev, Purdue’s Bob and Anne Burnett Distinguished Professor of Electrical and Computer Engineering.

light pulseA new device bends visible light inside a crystal to producesynchrotron” promieniowanie (blue and green) via an accelerating light pulse (czerwony) on a scale a thousand times smaller than massive facilities around the world. (University of Michigan image/Meredith Henstridge)Pobierz obraz

The device that Michigan and Purdue researchers built generates so-calledsynchrotron” promieniowanie, which is electromagnetic energy given off by charged particles, such as electrons and ions, that are moving close to the speed of light when magnetic fields bend their paths.

Several facilities around the world, like DESY, generate synchrotron radiation to study a broad range of problems from biology to materials science.

But past efforts to bend light to follow a circular path have come in the form of lenses or spatial light modulators too bulky for on-chip technology.

A team led by Merlin and Meredith Henstridge, now a postdoctoral researcher at the Max Planck Institute for the Structure and Dynamics of Matter, substituted these bulkier forms with about 10 million tiny antennae printed on a lithium tantalite crystal, called ametasurface,” designed by the Michigan team of Anthony Grbic and built by Purdue researchers.

The researchers used a laser to produce a pulse of visible light that lasts for one trillionth of a second. The array of antennae causes the light pulse to accelerate along a curved trajectory inside the crystal.

Instead of a charged particle spiraling for kilometers on end, the light pulse displaced electrons from their equilibrium positions to createdipole moments.These dipole moments accelerated along the curved trajectory of the light pulse, resulting in the emission of synchrotron radiation much more efficiently at the terahertz range.

This isn’t being built for a computer chip yet, but this work demonstrates that synchrotron radiation could eventually help develop on-chip terahertz sources,” Shalaev said.

Źródło:, by Kayla Wiles


Zostaw odpowiedź