Registrar agora

Entrar

Senha perdida

Perdeu sua senha? Por favor, indique o seu endereço de e-mail. Você receberá um link e vai criar uma nova senha via e-mail.

Adicionar pós

Você deve entrar para adicionar pós .

Adicionar pergunta

Você deve fazer login para fazer uma pergunta.

Entrar

Registrar agora

Bem-vindo ao Scholarsark.com! O seu registo irá conceder-lhe o acesso ao uso de mais recursos desta plataforma. Você pode fazer perguntas, fazer contribuições ou fornecer respostas, ver perfis de outros usuários e muito mais. Registrar agora!

Exames Práticos | MS Azure DP-100 Design & Implement DS Sol

Exames Práticos | MS Azure DP-100 Design & Implement DS Sol

Preço: $19.99

In order to set realistic expectations, please note: These questions are NOT official questions that you will find on the official exam. These questions DO cover all the material outlined in the knowledge sections below. Many of the questions are based on fictitious scenarios which have questions posed within them.

The official knowledge requirements for the exam are reviewed routinely to ensure that the content has the latest requirements incorporated in the practice questions. Updates to content are often made without prior notification and are subject to change at any time.

Cada pergunta tem uma explicação detalhada e links para materiais de referência para apoiar as respostas que garantem a precisão das soluções do problema.

As perguntas serão embaralhadas cada vez que você repetir os testes, então você precisará saber porque uma resposta está correta, não apenas que a resposta correta foi o item “B” última vez que você passou pelo teste.

O Azure Data Scientist aplica seu conhecimento de ciência de dados e aprendizado de máquina para implementar e executar cargas de trabalho de aprendizado de máquina no Azure; em particular, using Azure Machine Learning Service and Azure Databricks. Isso envolve o planejamento e a criação de um ambiente de trabalho adequado para cargas de trabalho de ciência de dados no Azure, executando experimentos de dados e modelos preditivos de treinamento, gerenciamento e otimização de modelos, and deploying machine learning models into production.Candidates for the Azure Data Scientist Associate certification should have subject matter expertise applying data science and machine learning to implement and run machine learning workloads on Azure.

Exames práticos Microsoft DP-100. Exames práticos Microsoft DP-100. além do que, além do mais, Exames práticos Microsoft DP-100, Exames práticos Microsoft DP-100, and deploy machine learning models into production.

A candidate for this certification should have knowledge and experience in data science and using Azure Machine Learning and Azure Databricks.

Skills measured on Microsoft Azure DP-100 Exam

Set up an Azure Machine Learning Workspace (30-35%)

Exames práticos Microsoft DP-100

  • create an Azure Machine Learning workspace

  • configure workspace settings

  • manage a workspace by using Azure Machine Learning studio

Manage data objects in an Azure Machine Learning workspace

  • register and maintain datastores

  • create and manage datasets

Manage experiment compute contexts

  • create a compute instance

  • determine appropriate compute specifications for a training workload

  • create compute targets for experiments and training

Run Experiments and Train Models (25-30%)

Create models by using Azure Machine Learning Designer

  • create a training pipeline by using Azure Machine Learning designer

  • ingest data in a designer pipeline

  • use designer modules to define a pipeline data flow

  • use custom code modules in designer

Run training scripts in an Azure Machine Learning workspace

  • create and run an experiment by using the Azure Machine Learning SDK

  • configure run settings for a script

  • consume data from a dataset in an experiment by using the Azure Machine Learning SDK

Gerenciar dados em um workspace do Azure Machine Learning

  • log metrics from an experiment run

  • retrieve and view experiment outputs

  • use logs to troubleshoot experiment run errors

Automate the model training process

  • create a pipeline by using the SDK

  • pass data between steps in a pipeline

  • run a pipeline

  • monitor pipeline runs

Optimize and Manage Models (20-25%)

Use Automated ML to create optimal models

  • use the Automated ML interface in Azure Machine Learning studio

  • use Automated ML from the Azure Machine Learning SDK

  • select pre-processing options

  • determine algorithms to be searched

  • define a primary metric

  • get data for an Automated ML run

  • retrieve the best model

Use Hyperdrive to tune hyperparameters

  • select a sampling method

  • define the search space

  • define the primary metric

  • define early termination options

  • find the model that has optimal hyperparameter values

Implementar pipelines usando o SDK do Azure Machine Learning

  • select a model interpreter

  • generate feature importance data

Manage models

  • register a trained model

  • monitor model usage

  • monitor data drift

Deploy and Consume Models (20-25%)

Create production compute targets

  • consider security for deployed services

  • evaluate compute options for deployment

Gerenciar dados em um workspace do Azure Machine Learning

  • configure deployment settings

  • consume a deployed service

  • troubleshoot deployment container issues

Create a pipeline for batch inferencing

  • publish a batch inferencing pipeline

  • run a batch inferencing pipeline and obtain outputs

Publish a designer pipeline as a web service

  • create a target compute resource

  • configure an Inference pipeline

  • consume a deployed endpoint

O exame está disponível nos seguintes idiomas: Inglês, japonês, chinês (Simplificado), coreano

Sobre arkadmin

Deixe uma resposta