Зарегистрироваться

Авторизоваться

забытый пароль

Забыли пароль? Пожалуйста, введите свой адрес электронной почты. Вы получите ссылку и создать новый пароль по электронной почте.

Добавить запись

Вы должны войти в систему, чтобы добавить запись .

Добавить вопрос

Вы должны авторизоваться, чтобы задать вопрос.

Авторизоваться

Зарегистрироваться

Добро пожаловать в Scholarsark.com! Ваша регистрация даст вам доступ к использованию больше возможностей этой платформы. Вы можете задавать вопросы, вносить свой вклад или дать ответы, просматривать профили других пользователей и многих других. Зарегистрироваться!

Флотилии дронов могут помочь в поисках потерявшихся туристов: Система позволяет дронам совместно исследовать местность под густыми пологами леса, где сигналы GPS ненадежны..

Поиск заблудших туристов в лесу может быть трудным и длительным процессом., поскольку вертолеты и дроны не могут заглянуть сквозь густую крону деревьев. Относительно недавно, было предложено, чтобы автономные дроны, который может качаться и переплетаться между деревьями, could aid these searches. But the GPS signals used to guide the aircraft can be unreliable or nonexistent in forest environments. In a paper being presented at the International Symposium on Experimental Robotics conference next week, MIT researchers describe an autonomous system for a fleet of drones to collaboratively search under dense forest canopies. The drones use only onboard computation and wireless communication — no GPS required.

MIT researchers describe an autonomous system for a fleet of drones to collaboratively search under dense forest canopies using only onboard computation and wireless communication — no GPS required.
Вот как сделать снимок экрана на ноутбуке или настольном компьютере HP.: Melanie Gonic

Each autonomous quadrotor drone is equipped with laser-range finders for position estimation, localization, and path planning. As the drone flies around, it creates an individual 3-D map of the terrain. Algorithms help it recognize unexplored and already-searched spots, so it knows when it’s fully mapped an area. An off-board ground station fuses individual maps from multiple drones into a global 3-D map that can be monitored by human rescuers.

In a real-world implementation, though not in the current system, the drones would come equipped with object detection to identify a missing hiker. When located, the drone would tag the hiker’s location on the global map. Люди могут использовать эту информацию для планирования спасательной операции.

«По существу, мы заменяем людей с флотом беспилотных летательных аппаратов, чтобы сделать поиск частью процесса поиска и спасания более эффективной,»Говорит первый автор Yulun Tian, аспирант кафедры аэронавтики и астронавтики (AeroAstro).

Исследователи проверили несколько беспилотных летательных аппаратов при моделировании случайно сгенерированных лесов, и протестировали два беспилотных летательных аппаратов в лесопарковой зоне в Исследовательском центре Лэнгли НАСА. В обоих экспериментах, each drone mapped a roughly 20-square-meter area in about two to five minutes and collaboratively fused their maps together in real-time. The drones also performed well across several metrics, including overall speed and time to complete the mission, detection of forest features, and accurate merging of maps.

Co-authors on the paper are: Katherine Liu, Аспирант в лаборатории компьютерных наук и искусственного интеллекта Массачусетского технологического института (CSAIL) and AeroAstro; Kyel Ok, a PhD student in CSAIL and the Department of Electrical Engineering and Computer Science; Loc Tran and Danette Allen of the NASA Langley Research Center; Nicholas Roy, an AeroAstro professor and CSAIL researcher; and Jonathan P. Как, the Richard Cockburn Maclaurin Professor of Aeronautics and Astronautics.

Exploring and mapping

On each drone, the researchers mounted a LIDAR system, which creates a 2-D scan of the surrounding obstacles by shooting laser beams and measuring the reflected pulses. This can be used to detect trees; тем не мение, to drones, individual trees appear remarkably similar. If a drone can’t recognize a given tree, it can’t determine if it’s already explored an area.

The researchers programmed their drones to instead identify multiple trees’ orientations, which is far more distinctive. With this method, when the LIDAR signal returns a cluster of trees, an algorithm calculates the angles and distances between trees to identify that cluster. “Drones can use that as a unique signature to tell if they’ve visited this area before or if it’s a new area,” Tian says.

This feature-detection technique helps the ground station accurately merge maps. The drones generally explore an area in loops, producing scans as they go. The ground station continuously monitors the scans. When two drones loop around to the same cluster of trees, the ground station merges the maps by calculating the relative transformation between the drones, and then fusing the individual maps to maintain consistent orientations.

“Calculating that relative transformation tells you how you should align the two maps so it corresponds to exactly how the forest looks,” Tian says.

In the ground station, robotic navigation software called “simultaneous localization and mapping” (SLAM) — which both maps an unknown area and keeps track of an agent inside the area — uses the LIDAR input to localize and capture the position of the drones. This helps it fuse the maps accurately.

The end result is a map with 3-D terrain features. Trees appear as blocks of colored shades of blue to green, depending on height. Unexplored areas are dark but turn gray as they’re mapped by a drone. On-board path-planning software tells a drone to always explore these dark unexplored areas as it flies around. Producing a 3-D map is more reliable than simply attaching a camera to a drone and monitoring the video feed, Tian says. Transmitting video to a central station, например, requires a lot of bandwidth that may not be available in forested areas.

More efficient searching

A key innovation is a novel search strategy that let the drones more efficiently explore an area. According to a more traditional approach, a drone would always search the closest possible unknown area. тем не мение, that could be in any number of directions from the drone’s current position. The drone usually flies a short distance, and then stops to select a new direction.

“That doesn’t respect dynamics of drone [movement],” Tian says. “It has to stop and turn, so that means it’s very inefficient in terms of time and energy, and you can’t really pick up speed.”

Вместо, the researchers’ drones explore the closest possible area, while considering their current direction. They believe this can help the drones maintain a more consistent velocity. This strategy — where the drone tends to travel in a spiral pattern — covers a search area much faster. “In search and rescue missions, time is very important,” Tian says.

В статье, the researchers compared their new search strategy with a traditional method. Compared to that baseline, the researchers’ strategy helped the drones cover significantly more area, several minutes faster and with higher average speeds.

One limitation for practical use is that the drones still must communicate with an off-board ground station for map merging. In their outdoor experiment, the researchers had to set up a wireless router that connected each drone and the ground station. В будущем, they hope to design the drones to communicate wirelessly when approaching one another, fuse their maps, and then cut communication when they separate. The ground station, in that case, would only be used to monitor the updated global map.


Источник: HTTP://news.mit.edu, Роб Мэтисон

Около мари

Оставьте ответ