Зарегистрироваться

Авторизоваться

забытый пароль

Забыли пароль? Пожалуйста, введите свой адрес электронной почты. Вы получите ссылку и создать новый пароль по электронной почте.

Добавить запись

Вы должны войти в систему, чтобы добавить запись .

Добавить вопрос

Вы должны авторизоваться, чтобы задать вопрос.

Авторизоваться

Зарегистрироваться

Добро пожаловать в Scholarsark.com! Ваша регистрация даст вам доступ к использованию больше возможностей этой платформы. Вы можете задавать вопросы, вносить свой вклад или дать ответы, просматривать профили других пользователей и многих других. Зарегистрироваться!

Модели прогнозирования с викторинами о спортивных данных & Ответы — Курсера

Dive into the exciting world of sports analytics with engaging quizzes and expert answers on Prediction Models с Спортивный Данные. Исследуйте пересечение науки о данных и спорта, where predictive modelling is changing the way we understand and analyse sports performance. These quizzes serve as a gateway to unravelling the complexities of building accurate predictive models with sports data, from player performance to game outcomes.

Whether you are a sports enthusiast fascinated by the data behind the game, or a data science enthusiast looking to apply predictive analytics in a sporting context, this collection offers valuable insights into the power of data-driven decision-making in sport. Join us on a journey of statistical discovery as we explore the realm of предсказательный модели с помощью виды спорта данные and open up opportunities for data-driven insights and strategic advantages in the world of sports analytics.

викторина 1: Неделю 1 – Quiz 1

Q1. From the LPM, what was the regression coefficient for the Pythagorean winning percentage in explaining the binary winning variable, named “WIN”?

  • Pythagorean Win%: 6.2946
  • Pythagorean Win%: 2.6461
  • Pythagorean Win%: 5.542
  • Pythagorean Win%: 16.393

2 квартал. From the LPM, what was the R-squared value?

  • 0.102
  • 10.2
  • 1.02
  • 0.0102

3 квартал. From the Logistic Regression, what was the regression coefficient for the Pythagorean winning %?

  • 30.5739
  • 26.550
  • 34.598
  • 1.027

4 квартал. From the Logistic Regression, what is the standard error for the Pythagorean winning %?

  • 2.053
  • 20.53
  • 1.027
  • 1.023

Q5. From the Logistic Regression, what fraction of results were correctly predicted %?

  • 65%
  • 55%
  • 90%
  • 38%

Q6. From the Multiple Logistic Regression which incorporated the home team advantage, what fraction of results were correctly predicted %?

  • 90%
  • 58%
  • 35%
  • 65%

викторина 2: Неделю 1 – Quiz 2

Q1. After splitting the regular season dataset using the game id (то есть, GAME_ID), how many games were Atlanta Hawks and Chicago Bulls played previously (refer to the “NBA17_pre_team” dataset)?

  • Atlanta Hawks: 40
    Chicago Bulls: 42
  • Atlanta Hawks: 41
    Chicago Bulls: 41
  • Atlanta Hawks: 41
    Chicago Bulls: 42
  • Atlanta Hawks: 44
    Chicago Bulls: 40

2 квартал. What was the correlation coefficient between the Pythagorean winning % and Winning % in the 1st half of the data set (refer to “NBA17_pre_team” dataset)?

  • 0.78
  • 0.89
  • 0.45
  • 0.91

3 квартал. What was the winning % of Chicago Bulls in the 2nd half of the dataset (refer to the “NBA_17_post_team” dataset)

  • 43%
  • 55%
  • 41%
  • 30%

4 квартал. From the forecasting model, what were the regression coefficients for each independent variable (то есть, “wpc_pre” and “pyth_pre”

  • Pythagorean Win %: 3.75
    Win %: 0.825
  • Pythagorean Win %: 6.25
    Win %: 0.756
  • Pythagorean Win %: 4.55
    Win %: 0.567
  • Pythagorean Win %: 7.55
    Win %: 0.625

Неделю 2: Prediction Models with Sports Data Coursera Quiz Answers

викторина 1: Неделю 2 викторина

Q1. What is the correlation between the home team win probability and home team wins across the entire 2018/19 сезон?

  • +0.413
  • +0.576
  • +0.397
  • -0.198

2 квартал. What is the correlation between the home team win probability and home team wins for games where the points difference was less than 9?

  • +0.414
  • -0.198
  • +0.455
  • +0.198

3 квартал. What is the correlation between the home team win probability and home team wins for games where the points difference was greater than 9?

  • -0.319
  • +0.321
  • +0.198
  • +0.576

4 квартал. Considering the answers to the last two questions, what do you think is the most likely explanation of these results

  • Bookmakers make the odds more random to attract bets on close games
  • The observed differences in the correlations are just random
  • Bookmakers are not good forecasters
  • Uncertain games are ones where the bookmakers odds are most likely to be wrong and the scores are likely to be closest

Q5. What is the correlation between the home team win probability and home team wins for games where the game went to overtime?

  • +0.414
  • -0.397
  • +0.319
  • +0.032

Q6. What is the correlation between the home team win probability and home team wins for games where the game was finished in regular time?

  • +0.576
  • +0.414
  • -0.413
  • +0.503

Q7. What is the correlation between the home team win probability and home team wins for games where the game was played in calendar year 2018?

  • +0.338
  • +0.319
  • +0.322
  • -0.322

Q8. What is the correlation between the home team win probability and home team wins for games where the game was played in calendar year 2019?

  • +0.455
  • +0.379
  • -0.438
  • +0.438

Q9. In which month was the correlation coefficient between the home team win probability and home team wins greatest?

  • январь
  • октября
  • Декабрь
  • апрель

Q10. In which month was the correlation coefficient between the home team win probability and home team wins lowest?

  • марш
  • февраль
  • ноябрь
  • октября

Неделю 3: Prediction Models with Sports Data Coursera Quiz Answers

Неделю 3 викторина

Q1. Based on the crosstab, what percentage of games did the bookmaker predict correctly over the entire season

  • 52%
  • 36%
  • 48%
  • 64%

2 квартал. From the ordered logit model, what is the coefficient of the TM ratio variable?

  • 0.1129
  • -0.6734
  • 0.3356
  • 0.5981

3 квартал. In the ordered logit model, what is the best we can say about the statistical significance of the TM ratio variable?

  • It is statistically significant at the 10% пределы процесса устанавливаются путем установки верхнего и нижнего уровней для диапазона параметров (p-value)
  • It is statistically significant at the 1% пределы процесса устанавливаются путем установки верхнего и нижнего уровней для диапазона параметров (p-value)
  • It is not statistically significant
  • It is statistically significant at the 5% пределы процесса устанавливаются путем установки верхнего и нижнего уровней для диапазона параметров (p-value)

4 квартал. In the logistic regression model, if the ratio of the TM values equaled one, тогда

  • The value of the constants alone would determine the probability of a win, draw or loss for the home team
  • Each team would have an equal chance of winning
  • The result would be completely random
  • Each team would be equally good

Q5. Based on the bookmaker odds, what fraction of results were correctly predicted from game 224 называя это?

  • 45%
  • 39%
  • 55%
  • 50%

Q6. Based on the ordered logit model, what fraction of results were correctly predicted

  • 39%
  • 54%
  • 48%
  • 50%

Q7. What was the Brier score derived from the bookmaker odds?

  • 0.562
  • 0.692
  • 0.477
  • 0.587

Q8. What was the Brier score derived from the logistic model?

  • 0.393
  • 0.747
  • 0.399
  • 0.594

Q9. A lower Brier score implies

  • The match results are more random
  • The probabilities were closer to the actual the outcomes
  • The probabilities were further away from the actual the actual outcomes
  • The match results are less random

Q10. Suppose that the ordered logit model were updated after every game in the season, which of the following is most likely to be true:

  • The ordered logit model would be more accurate as the season progressed
  • The ordered logit model would produce more reliable forecasts
  • The ordered logit model would still perform less well than the bookmaker odds

Неделю 4: Prediction Models with Sports Data Coursera Quiz Answers

викторина 1: Неделю 4 викторина

Q1. How many games were played in calendar year 2018

  • 1230
  • 542
  • 543
  • 540

2 квартал. From the logistic model, what is the coefficient of the salary ratio variable?

  • 1.1216
  • 0.4452
  • 5.026
  • 2.482

3 квартал. In the logistic model, what can we say about the statistical significance on the variables?

  • Both are statistically significant at the 5% пределы процесса устанавливаются путем установки верхнего и нижнего уровней для диапазона параметров (p-value)
  • Both are statistically significant
  • Both are statistically significant at the 1% пределы процесса устанавливаются путем установки верхнего и нижнего уровней для диапазона параметров (p-value)
  • Only the constant is statistically significant at the 5% пределы процесса устанавливаются путем установки верхнего и нижнего уровней для диапазона параметров (p-value)

4 квартал. In the logistic regression model, what is the interpretation of the constant (intercept)

  • It reflects the value of home advantage
  • It is a random parameter
  • It is the predicted probability of a home win
  • It has no natural interpretation

Q5. Based on the bookmaker odds, what fraction of results were correctly predicted

  • 66%
  • 69%
  • 39%
  • 96%

Q6. Based on the logistic model, what fraction of results were correctly predicted

  • 59%
  • 69%
  • 48%
  • 39%

Q7. What was the Brier score derived from the bookmaker odds?

  • 0.394
  • 0.692
  • 0.587
  • 0.477

Q8. What was the Brier score derived from the logistic model?

  • 0.393
  • 0.747
  • 0.399
  • 0.477

Q9. A lower Brier score implies

  • The match results are more random
  • The probabilities were further away from the actual the actual outcomes
  • The match results are less random
  • The probabilities were closer to the actual the actual outcomes

Q10. Suppose that the logistic model were updated after every game in the season, which of the following is most likely to be true:

  • The logistic model would produce more reliable forecasts
  • The logistic model would still perform less well than the bookmaker odds
  • The logistic model would be more accurate as the season progressed

Автор

  • Хелен Бэсси

    Привет, I'm Helena, автор блога, который любит публиковать познавательный контент в нише образования. Я считаю, что образование является ключом к личному и социальному развитию., и я хочу поделиться своими знаниями и опытом с учащимися всех возрастов и слоев общества.. В моем блоге, вы найдете статьи на такие темы, как стратегии обучения, онлайн-образование, Профориентация, и более. Я также приветствую отзывы и предложения от моих читателей., так что не стесняйтесь оставлять комментарии или обращаться ко мне в любое время. Надеюсь, вам понравится читать мой блог и вы найдете его полезным и вдохновляющим..

    Просмотреть все сообщения

Около Хелен Бэсси

Привет, I'm Helena, автор блога, который любит публиковать познавательный контент в нише образования. Я считаю, что образование является ключом к личному и социальному развитию., и я хочу поделиться своими знаниями и опытом с учащимися всех возрастов и слоев общества.. В моем блоге, вы найдете статьи на такие темы, как стратегии обучения, онлайн-образование, Профориентация, и более. Я также приветствую отзывы и предложения от моих читателей., так что не стесняйтесь оставлять комментарии или обращаться ко мне в любое время. Надеюсь, вам понравится читать мой блог и вы найдете его полезным и вдохновляющим..

Оставьте ответ