Jiandikishe sasa

Ingia

Nenosiri lililopotea

Umepoteza nywila yako? Tafadhali ingiza anwani yako ya barua pepe. Utapokea kiunga na utaunda nywila mpya kupitia barua pepe.

Ongeza chapisho

Lazima uingie ili kuongeza chapisho .

Ongeza swali

Lazima uingie ili kuuliza swali.

Ingia

Jiandikishe sasa

Karibu kwenye Scholarsark.com! Usajili wako utakupa ufikiaji wa kutumia huduma zaidi za jukwaa hili. Unaweza kuuliza maswali, toa michango au toa majibu, angalia maelezo mafupi ya watumiaji wengine na mengi zaidi. Jiandikishe sasa!

Roboti za kisasa, Kozi 1: Misingi ya Maswali ya Mwendo wa Roboti & Majibu - Coursera

Take a journey into the world of robotiki with interesting quizzes and expert answers on Foundations of Robot Motion ndani Modern Umeme wa Dijitali, Kozi 1.Discover the fundamental principles that govern robot motion, from kinematics to control algorithms that will shape the future of automation and technology. These quizzes are designed to provide a solid foundation in the fundamental concepts of robot motion, and offer insights into the mechanics and mathematics underlying robot motion.

Whether you are a robotiki enthusiast looking to deepen your knowledge or a student looking to explore the exciting field of robotiki, this collection provides valuable information on the fundamentals of robot motion. Join us as we navigate the landscape of modern robotics, unravel the complexities of robot motion, and lay the groundwork for advanced robotic applications. Let’s embark together on this enlightening journey as we delve into the fascinating world of robotic motion and its implications for technology and innovation.

Maswali 01: Lecture Comprehension, Degrees of Freedom of a Rigid Body (Sura 2 kupitia 2.1)

Q1. Which of the following are possible elements of robots in this specialization? Chagua zote zinazotumika.

  • Rigid bodies.
  • Laini, flexible bodies.
  • Joints.

Q2. The number of degrees of freedom of a robot is (chagua yote yanayotumika):

  • the dimension of its configuration space.
  • the number of real numbers needed to specify its configuration.
  • the number of points on the robot.
  • the number of joints of the robot.
  • the number of bodies comprising the robot.
  • the number of freedoms of the bodies minus the number of independent constraints between the bodies

Q3. The number of degrees of freedom of a planar rigid body i

Q4. The number of degrees of freedom of a spatial rigid body is

Q5. A rigid body in nn-dimensional space has mm total degrees of freedom. How many of these mm degrees of freedom are angular (not linear)? Chagua zote zinazotumika. (This is consistently one of the most incorrectly answered questions in this course, so think about it carefully!)

  • m-nm-n
  • n(n-1)/2n(n−1)/2
  • Neither of the above.

Maswali 02: Lecture Comprehension, Degrees of Freedom of a Robot (Sura 2.2)

Q1. Consider a joint between two rigid bodies. Each rigid body has mm degrees of freedom (m=3m=3 for a planar rigid body and m=6m=6 for a spatial rigid body) in the absence of any constraints. The joint has ff degrees of freedom (mf., f=1f=1 for a revolute joint or f=3f=3 for a spherical joint). How many constraints does the joint place on the motion of one rigid body relative to the other? Write your answer as a mathematical expression in terms of mm and ff

Q2. Consider a mechanism consisting of three spatial rigid bodies (including ground, N=4N=4) and four joints: one revolute, one prismatic, one universal, and one spherical. According to Grubler’s formula, how many degrees of freedom does the mechanism have?

Q3. A mechanism that is incapable of motion has zero degrees of freedom. In some circumstances, Grubler’s formula indicates that the number of degrees of freedom of a mechanism is negative. How should that result be interpreted?

  • The constraints implied by the joints must not be independent.
  • The number of joints, the degrees of freedom of those joints, or the number of rigid bodies must have been counted incorrectly.

Maswali 03: Sura 2 kupitia 2.2, Configuration Space

Q1. Using the methods for determining the number of degrees of freedom of a rigid body in 3-dimensional space from the book and the video, find the number of degrees of freedom of a rigid body in a conceptual 4-dimensional space. Your answer should be an integer

Q2. Referring back to Question 1, indicate how many of the total degrees of freedom are angular (rotational). Your answer should be an integer

Q3. Assume your arm, from your shoulder to your palm, ni kwa mtu yeyote anayetafuta nyenzo za kusomea ambazo hutoa zifuatazo 7 degrees of freedom. You are carrying a tray like a waiter, and you must keep the tray horizontal to avoid spilling drinks on the tray. How many degrees of freedom does your arm have while satisfying the constraint that the tray stays horizontal? Your answer should be an integer

Q4. Four identical SRS arms are grasping a common object as shown below. igjSFNLKEeeacxI l487A 8b43caa2ac1db5043cfc8ddafec054e4 ex03 01

Find the number of degrees of freedom of this system while the grippers hold the object rigidly (no relative motion between the object and the last links of the SRS arms). Your answer should be an integer

Q5. Referring back to Question 4, suppose there are now a total of nn such arms grasping the object. What is the number of degrees of freedom of this system? Your answer should be a mathematical expression including nn. Examples of mathematical expressions including nn are 4*n-74∗n−7 or n/3n/3

Q6. Referring back to Question 4 na 5, suppose the revolute joint in each of the nn arms is now replaced by a universal joint. What is the number of degrees of freedom of the overall system? Your answer should be a mathematical expression including nn. Examples of mathematical expressions including nn are 4*n-74∗n−7 or n/3n/3

Swali 7. Use the planar version of Grubler’s formula to determine the number of degrees of freedom of the mechanism shown below. Your answer should be an integer. (Remember that a single joint can only connect two rigid bodies, so if you see more than two connecting at a single point, there must be more than one joint there. Pia, the two blocks in the channels are only allowed to move prismatically in those channels, and one of the joints is labeled “P” for prismatic. You will need to identify all the other joints, and links.)

Wiki 02: Roboti za kisasa, Kozi 1: Foundations of Robot Motion Quiz Answers

Maswali 01: Lecture Comprehension, Configuration Space Topology (Sura 2.3.1)

Q1. To deform one nn-dimensional space into another topologically equivalent space, which operations are you allowed to use? Chagua zote zinazotumika.

  • Stretching
  • Cutting.
  • Gluing.

Q2. True or false? An nn-dimensional space can be topologically equivalent to an mm-dimensional space, where m \neq nm​=n.

  • Kweli.
  • Uongo.

Maswali 02: Lecture Comprehension, Configuration Space Representation (Sura 2.3.2)

Q1.True or false? An explicit parametrization uses fewer numbers to represent a configuration than an implicit representation.

Kweli.

Uongo

Q2. A kk-dimensional space is represented by 7 coordinates subject to 3 independent constraints. What is kk?

Maswali 02: Lecture Comprehension, Configuration and Velocity Constraints (Sura 2.4)

Q1. True or false? A nonholonomic constraint implies a configuration constraint.

  • Kweli.
  • Uongo.

Q2. True or false? A Pfaffian velocity constraint is necessarily nonholonomic.

  • Kweli.
  • Uongo.

Q3. A wheel moving in free space has the six degrees of freedom of a rigid body. If we constrain it to be upright on a plane (no “leaning”) and to roll without slipping, how many holonomic and nonholonomic constraints is the wheel subject to?

  • Two holonomic constraints and two nonholonomic constraints.
  • Three holonomic constraints and zero nonholonomic constraints.
  • Zero holonomic constraints and three nonholonomic constraints.
  • One holonomic constraint and two nonholonomic constraints.

Q4. How many degrees of freedom does the upright wheel on the plane have? (What is the minimum number of coordinates needed to describe its configuration?)

Maswali 03: Lecture Comprehension, Task Space and Workspace (Sura 2.5)

Q1. If the task is to control the orientation of a spaceship simulator, but not its position, how many degrees of freedom does the task space have?

Q2. True or false? The workspace depends on the robot’s joint limits but the task space does not.

  • Kweli.
  • Uongo.

Maswali 04: Sura 2.3 kupitia 2.5, Configuration Space

Q1. The tip coordinates for the two-link planar 2R robot of figure below are given by

x = \cos \theta_1 + 2 \cos (\theta_1 + \theta_2) x=coslakini haifanyi yaliyomo katika hisabati kuwa tofauti1​+2cos(lakini haifanyi yaliyomo katika hisabati kuwa tofauti1​+lakini haifanyi yaliyomo katika hisabati kuwa tofauti2.)

y = \sin \theta_1 + 2 \sin (\theta_1 + \theta_2)Y=sinlakini haifanyi yaliyomo katika hisabati kuwa tofauti1​+2sin(lakini haifanyi yaliyomo katika hisabati kuwa tofauti1​+lakini haifanyi yaliyomo katika hisabati kuwa tofauti2.)

(Kwa maneno mengine, kiungo 1 has length 1 and link 2 has length 2.) The joint angles have no limits. Kd9 WNicEeebHwrXRRPVgA 36facc5fc846d72ea5487187a9e64679 ex01 01

Which of the following best describes the shape of the robot’s workspace (the set of locations the endpoint can reach)?

  • A circle and its interior.
  • A circle only (not including the interior).
  • Annulus or ring (the area between two concentric bounding circles).

Q2. The chassis of a mobile robot moving on a flat surface can be considered as a planar rigid body. Assume that the chassis is circular, and the mobile robot moves in a square room. Which of the following could be a mathematical description of the C-space of the chassis while it is confined to the room? (See Chapter 2.3.1 for related discussion.)

  • [a,b] \nyakati [a,b] \times S^1[a,b]×[a,bS1
  • [a,b] \times \mathbb{R}^1 \times S^1[a,b]×R1×S1
  • [a,b] \nyakati [a,b] \times \mathbb{R}^1[a,b]×[a,b]×R1
  • \mathbb{R}^2 \times S^1R2×S1

Q3. Which of the following is a possible mathematical description of the C-space of a rigid body in 3-dimensional space?

  • \mathbb{R}^3 \times S^3R3×S3
  • \mathbb{R}^3 \times T^3R3×T3
  • \mathbb{R}^3 \times T^2 \times S^1R3×TS1
  • \mathbb{R}^3 \times S^2 \times S^1R3×SS1

Q4. A spacecraft is a free-flying rigid body with a 7R arm mounted on it. The joints have no joint limits. Give a mathematical description of the C-space of this system. (See Chapter 2.3.1 for related discussion.)

  • \mathbb{R}^3 \times T^{10}R3×T10
  • \mathbb{R}^3 \times S^2 \times T^8R3×ST8
  • \mathbb{R}^3 \times S^3 \times T^7R3×ST7
  • \mathbb{R}^4 \times S^2 \times T^7R4×ST7

Q5. A mobile robot is moving on an infinite plane with an RPR robot arm mounted on it. The prismatic joint has joint limits, but the revolute joints do not. Give a mathematical description of the C-space of the chassis (which can rotate and translate in the plane) plus the robot arm. (See Chapter 2.3.1 for related discussion.)

  • \mathbb{R}^2 \times S^2 \times S^1 \times [a,b]R2×SS1×[a,b]
  • \mathbb{R}^2 \times S^3 \times [a,b]R2×S3×[a,b]
  • \mathbb{R}^2 \times T^3 \times [a,b]R2×T3×[a,b]
  • \mathbb{R}^3 \times T^3R3×T3

Q6. Determine whether the following differential constraint is holonomic or not (nonholonomic). See the example in Chapter 2.4.

(1+ \cos q_1) \nukta{hapa kuna lebo za kitamaduni za tabia mbali mbali za mwili}_1 + (2+ \sin q_2) \nukta{hapa kuna lebo za kitamaduni za tabia mbali mbali za mwili}_2 + (\cos q_1+ \sin q_2 + 3) \nukta{hapa kuna lebo za kitamaduni za tabia mbali mbali za mwili}_3 = 0.(1+coshapa kuna lebo za kitamaduni za tabia mbali mbali za mwili1.)hapa kuna lebo za kitamaduni za tabia mbali mbali za mwili˙​1​+(2+sinhapa kuna lebo za kitamaduni za tabia mbali mbali za mwili2.)hapa kuna lebo za kitamaduni za tabia mbali mbali za mwili˙​2​+(coshapa kuna lebo za kitamaduni za tabia mbali mbali za mwili1​+sinhapa kuna lebo za kitamaduni za tabia mbali mbali za mwili2​+3)hapa kuna lebo za kitamaduni za tabia mbali mbali za mwili˙​3​=0.

  • Holonomic
  • Nonholonomic

Swali 7. The task is to carry a waiter’s tray so that it is always horizontal (orthogonal to the gravity vector), but otherwise free to move in any other direction. How many degrees of freedom does the task space (the C-space of a horizontal tray) kuwa na? (Enter an integer number.)

Wiki 03: Roboti za kisasa, Kozi 1: Foundations of Robot Motion Quiz Answers

Maswali 01: Lecture Comprehension, Introduction to Rigid-Body Motions (Sura 3 kupitia 3.1)

Q1. Which do we typically use to represent the C-space of a rigid body?

  • Explicit parametrization (minimum number of coordinates).
  • Implicit representation.

Q2. By the right-hand rule, which fingers of your right hand correspond to the x, Y, and z axes of a coordinate frame, mtawaliwa?

  • Thumb, index, middle
  • Kati, index, thumb
  • Kielezo, middle, thumb

Q3. When your thumb points along an axis of rotation, positive rotation about the axis is defined by the direction your fingers curl if you use which thumb?

  • Right thumb
  • Left thumb

Q4. When we refer to a frame attached to a moving body, we always consider a stationary frame {b}, kwa sababu

  • the motion of all other frames is expressed relative to {b}.
  • {b} is the stationary frame that is coincident (at a particular instant) with the frame attached to the moving body.

Maswali 02: Lecture Comprehension, Rotation Matrices (Sura 3.2.1, Sehemu 1 ya 2)

Q1. For the rotation matrix R_{ba}Rba​ representing the frame {a} relative to {b},

  • the rows are the x, Y, z axes of {a} written in {b} coordinates.
  • the columns are the x, Y, z axes of {a} written in {b} coordinates.
  • the rows are the x, Y, z axes of {b} written in {a} coordinates.
  • the columns are the x, Y, z axes of {b} written in {a} coordinates.

Q2. The 3 \times 33×3 rotation matrix is an implicit representation of spatial orientations consisting of 9 numbers subject to how many independent constraints

Q3. The inverse of a rotation matrix R_{ab}Rab., i.e., R_{ab}^{-1}Rab−1​, ni (chagua yote yanayotumika):

  • -R_{ab}-Rab.
  • R_{ab}^{\rm T}RabT​
  • R-IR-Mimi
  • R_{ba}Rba.

Q4. Multiplication of SO(3)SONAR(3) rotation matrices is (chagua yote yanayotumika):

  • associative.
  • commutative.

Maswali 03: Lecture Comprehension, Rotation Matrices (Sura 3.2.1, Sehemu 2 ya 2)

Q1. Which of the following is equivalent to R_{ac}Rac., the representation of the orientation of the {c} frame relative to the {a} frame? Chagua zote zinazotumika

  • R_{ab}R_{bc}Rab.Rbc.
  • R_{ab}R_{cb}^{\rm T}Rab.RcbT​
  • (R_{bc}^{\rm T} R_{ab}^{\rm T})^{\rm T}(RbcT​RabT​)T
  • R_{ad} R_{db} R_{bc}Rad.Rdb.Rbc.

Q2. The matrix

R = {\rm Rot}(\hat{{\rm x}},90^\circ) = \left[

1000010−10

\haki]R=Rot(x^,90)=⎣⎢⎡​100​001​0−10​⎦⎥⎤​

represents the orientation R_{sa}Rsa​ of a frame {a} that has been achieved by rotating the {s} frame by 90 degrees about its \hat{{\rm x}}x^-axis. Sasa, given a matrix R_{sb}Rsb​ representing the orientation of {b} relative to {s}, which of the following represents the orientation of a frame (relative to {s}) that was initially aligned with {b}, but then rotated about the {b}-frame’s \hat{{\rm x}}x^-axis by 90 digrii?

  • R_{sb} RRsb.R
  • R R_{sb}RRsb.

Q3. The matrix

R = {\rm Rot}(\hat{{\rm x}},90^\circ) = \left[

1000010−10

\haki]R=Rot(x^,90)=⎣⎢⎡​100​001​0−10​⎦⎥⎤​

represents the orientation R_{sa}Rsa​ of a frame {a} that has been achieved by rotating the {s} frame by 90 degrees about its \hat{{\rm x}}x^-axis. Sasa, given a matrix R_{sb}Rsb​ representing the orientation of {b} relative to {s}, which of the following represents the orientation of a frame (relative to {s}) that was initially aligned with {b}, but then rotated about the {s}-frame’s \hat{{\rm x}}x^-axis by 90 digrii

  • R_{sb}RRsb.R
  • R R_{sb}RRsb.

Maswali 04: Lecture Comprehension, Angular Velocities (Sura 3.2.2)

Q1. Our representation of the three-dimensional orientation uses an implicit representation (a 3×3 SO(3) matrix with 9 namba), but our usual representation of the angular velocity uses only three numbers, i.e., an explicit parametrization of the three-dimensional velocity space. Why do we use an implicit representation of the orientation but an explicit parametrization of the angular velocity?

  • There is no natural implicit representation of an angular velocity.
  • The space of angular velocities can be equated to a “flat” 3d space (a linear vector space) tangent to the curved 3d surface of orientations at any given time, so it can be globally represented by 3 numbers without singularities. The space of orientations, Kwa upande mwingine, is not flat, and cannot be globally represented by 3 numbers without a singularity.

Q2. A rotation matrix is an element of which space?

  • \mathbb{R}^3R3
  • SONAR(3)SONAR(3)
  • KOZI(3)KOZI(3)

Q3. An angular velocity is an element of which space?

  • \mathbb{R}^3R3
  • SONAR(3)SONAR(3)
  • KOZI(3)KOZI(3)

Q4. The 3×3 skew-symmetric matrix representation of an angular velocity is an element of which space

  • \mathbb{R}^3R3
  • SONAR(3)SONAR(3)
  • KOZI(3)KOZI(3)

Q5. If an angular velocity is represented as \omega_bωb​ in the body frame {b}, what is the representation of the same angular velocity in the space frame {s}?

  • R_{sb} \omega_bRsb.ωb.
  • R_{bs} \omega_bRbs.ωb.
  • \omega_b R_{sb}ωb.Rsb.
  • \omega_b R_{bs}ωb.Rbs.

Q6. The cross-product \omega \times pmwangaza×lakini inaweza kuwa na faida ya kutosha kwamba helical itashinda juu ya fimbo ya muda mrefu can be written [\omega] lakini inaweza kuwa na faida ya kutosha kwamba helical itashinda juu ya fimbo ya muda mrefu[mwangaza]lakini inaweza kuwa na faida ya kutosha kwamba helical itashinda juu ya fimbo ya muda mrefu, wapi [\omega][mwangaza] ni

  • the SO(3)SONAR(3) representation of \omegamwangaza.
  • the skew-symmetric so(3)KOZI(3) representation of \omegamwangaza.

Maswali 05: Lecture Comprehension, Exponential Coordinates of Rotation (Sura 3.2.3, Sehemu 1 ya 2)

Q1. The orientation of a frame {d} relative to a frame {c} can be represented by a unit rotation axis \hat{\omega}mwangaza^ and the distance \thetalakini haifanyi yaliyomo katika hisabati kuwa tofauti rotated about the axis. If we rotate the frame {c} by \thetalakini haifanyi yaliyomo katika hisabati kuwa tofauti about the axis \hat{\omega}mwangaza^ expressed in the {c} frame, we end up at {d}. The vector \hat{\omega}mwangaza^ has 3 numbers and \thetalakini haifanyi yaliyomo katika hisabati kuwa tofauti ni 1 nambari, but we only need 3 namba, the exponential coordinates \hat{\omega} \thetamwangaza^lakini haifanyi yaliyomo katika hisabati kuwa tofauti, to represent {d} relative to {c}, kwa sababu

  • though we use 3 numbers to represent \hat{\omega}mwangaza^, \hat{\omega}mwangaza^ actually only represents a point in a 2-dimensional space, the 2-dimensional sphere of unit 3-vectors.
  • the choice of \thetalakini haifanyi yaliyomo katika hisabati kuwa tofauti is not independent of \hat{\omega}mwangaza^.

Q2. One reason we use 3×3 rotation matrices (an implicit representation) to represent orientation is because it is a good global representation: there is a unique orientation for each rotation matrix, and vice-versa, and there are no singularities in the representation. In what way does the 3-vector of exponential coordinates fail these conditions? Chagua zote zinazotumika.

  • There could be more than one set of exponential coordinates representing the same orientation.
  • Some orientations cannot be represented by exponential coordinates.

Q3. The vector linear differential equation \dot{x}(t) = Bx(t)x˙(t)=Bx(t), where xx is a vector and BB is a constant square matrix, is solved as x(t) = e^{Bt} x(0)x(t)=eBtx(0), where the matrix exponential e^{Bt}eBt hufafanuliwa kama

  • the sum of an infinite series of matrices of the form (Bt)^0 + Bt + (Bt)^2/2! + (Bt)^3/3!\ldots(Bt)0+Bt+(Bt)2/2!+(Bt)3/3!….
  • the sum of an infinite series of matrices of the form Bt + Bt/2 + Bt/3 + \ldotsBt+Bt/2+Bt/3+….

Maswali 06: Lecture Comprehension, Exponential Coordinates of Rotation (Sura 3.2.3, Sehemu 2 ya 2)

Q1. The solution to the differential equation \dot{lakini inaweza kuwa na faida ya kutosha kwamba helical itashinda juu ya fimbo ya muda mrefu}(t) = \hat{\omega} \times p(t) = [\hat{\omega}] lakini inaweza kuwa na faida ya kutosha kwamba helical itashinda juu ya fimbo ya muda mrefu(t)lakini inaweza kuwa na faida ya kutosha kwamba helical itashinda juu ya fimbo ya muda mrefu˙​(t)=mwangazalakini inaweza kuwa na faida ya kutosha kwamba helical itashinda juu ya fimbo ya muda mrefu(t)=[mwangaza^]lakini inaweza kuwa na faida ya kutosha kwamba helical itashinda juu ya fimbo ya muda mrefu(t) is p(t) = e^{[\hat{\omega}\theta]}lakini inaweza kuwa na faida ya kutosha kwamba helical itashinda juu ya fimbo ya muda mrefu(0)lakini inaweza kuwa na faida ya kutosha kwamba helical itashinda juu ya fimbo ya muda mrefu(t)=e[mwangaza^lakini haifanyi yaliyomo katika hisabati kuwa tofauti]lakini inaweza kuwa na faida ya kutosha kwamba helical itashinda juu ya fimbo ya muda mrefu(0), where p(0)lakini inaweza kuwa na faida ya kutosha kwamba helical itashinda juu ya fimbo ya muda mrefu(0) is the initial vector and p(t)lakini inaweza kuwa na faida ya kutosha kwamba helical itashinda juu ya fimbo ya muda mrefu(t) is the vector after it has been rotated at the angular velocity \hat{\omega}mwangaza^ for time t=\thetat=lakini haifanyi yaliyomo katika hisabati kuwa tofauti (where \hat{\omega}\thetamwangaza^lakini haifanyi yaliyomo katika hisabati kuwa tofauti are the exponential coordinates). You can think of R = e^{[\hat{\omega}\theta]}R=e[mwangaza^lakini haifanyi yaliyomo katika hisabati kuwa tofauti] as the rotation operation that moves p(0)lakini inaweza kuwa na faida ya kutosha kwamba helical itashinda juu ya fimbo ya muda mrefu(0) to p(t) = p(\theta)lakini inaweza kuwa na faida ya kutosha kwamba helical itashinda juu ya fimbo ya muda mrefu(t)=lakini inaweza kuwa na faida ya kutosha kwamba helical itashinda juu ya fimbo ya muda mrefu(lakini haifanyi yaliyomo katika hisabati kuwa tofauti).

Which of the following statements is correct? Chagua zote zinazotumika.

  • R_{sb’} = R_{sb} e^{[\hat{\omega}\theta]}Rsb′​=Rsb.e[mwangaza^lakini haifanyi yaliyomo katika hisabati kuwa tofauti] represents the orientation of a new frame {b’} relative to {s} after the frame {b} has been rotated by \thetalakini haifanyi yaliyomo katika hisabati kuwa tofauti about an axis w represented in the {b} frame as \hat{\omega}mwangaza^.
  • R_{sb’} = R_{sb} e^{[\hat{\omega}\theta]}Rsb′​=Rsb.e[mwangaza^lakini haifanyi yaliyomo katika hisabati kuwa tofauti] represents the orientation of a new frame {b’} relative to {s} after the frame {b} has been rotated by \thetalakini haifanyi yaliyomo katika hisabati kuwa tofauti about an axis w represented in the {s} frame as \hat{\omega}mwangaza^.
  • R_{sb’} = e^{[\hat{\omega}\theta]} R_{sb} Rsb′​=e[mwangaza^lakini haifanyi yaliyomo katika hisabati kuwa tofauti]Rsb​ represents the orientation of a new frame {b’} relative to {s} after the frame {b} has been rotated by \thetalakini haifanyi yaliyomo katika hisabati kuwa tofauti about an axis w represented in the {b} frame as \hat{\omega}mwangaza^.
  • R_{sb’} = e^{[\hat{\omega}\theta]} R_{sb} Rsb′​=e[mwangaza^lakini haifanyi yaliyomo katika hisabati kuwa tofauti]Rsb​ represents the orientation of a new frame {b’} relative to {s} after the frame {b} has been rotated by \thetalakini haifanyi yaliyomo katika hisabati kuwa tofauti about an axis w represented in the {s} frame as \hat{\omega}mwangaza^.

Q2. The simple closed-form solution to the infinite series for the matrix exponential when the matrix is an element of so(3)KOZI(3) (a skew-symmetric 3×3 matrix) is called what?

  • Ramirez’s formula.
  • Rodrigues’ formula.
  • Robertson’s formula.

Q3. The matrix exponential and the matrix log relate a rotation matrix (an element of SO(3)SONAR(3)) and the skew-symmetric representation of the exponential coordinates (elements of so(3)KOZI(3)), which can also be thought of as the so(3)KOZI(3) representation of the angular velocity followed for unit time. Which of the following statements is correct? Chagua zote zinazotumika.

  • exp: KOZI(3) \rightarrow SO(3)KOZI(3)→SONAR(3)
  • exp: SONAR(3) \rightarrow so(3)SONAR(3)→KOZI(3)
  • log: KOZI(3) \rightarrow SO(3)KOZI(3)→SONAR(3)
  • log: SONAR(3) \rightarrow so(3)SONAR(3)→KOZI(3)

Maswali 07: Sura 3 kupitia 3.2, Rigid-Body Motions

Q1. In terms of the \hat{x}_{\textrm{s}}x^s​, \hat{Y}_{\textrm{s}}Y^​s​, \hat{ni mlinganyo halali wa kihisabati ikiwa}_{\textrm{s}}ni mlinganyo halali wa kihisabati ikiwa^s​ coordinates of a fixed space frame {s}, the frame {a} has its \hat{x}_{\textrm{a}}x^a​-axis pointing in the direction (0,0,1)(0,0,1) and its \hat{Y}_{\textrm{a}}Y^​a​-axis pointing in the direction (1,0,0)(1,0,0), and the frame {b} has its \hat{x}_{\textrm{b}}x^b​-axis pointing in the direction (1,0,0)(1,0,0) and its \hat{Y}_{\textrm{b}}Y^​b​-axis pointing in the direction (0,0,-1)(0,0,−1). Draw the {s}, {a}, na {b} muafaka, similar to examples in the book and videos (mf., Kielelezo 3.7 in the book), for easy reference in this question and later questions.

Write the rotation matrix R_{sa}Rsa.. All elements of this matrix should be integers.

Ikiwa jibu lako ni

\Ni rahisi sana kutambua miingiliano ya x na y kwenye grafu[

147258369

\haki]⎣⎢⎡​147​258​369​⎦⎥⎤​

kwa mfano, you should just type

[[1,2,3],[4,5,6],[7,8,9]]

in the answer box below. (You can just modify the matrix that is currently written there.) Then click “Run.” You will not get any immediate feedback; the grade will be given when you submit the whole quiz.

[[0,0,0],[0,0,0],[0,0,0]]

 

 

Q2 .Referring to your drawing from Question 1, write R_{sb}^{-1}Rsb−1​. All elements of this matrix should be integers.

Ikiwa jibu lako ni

\Ni rahisi sana kutambua miingiliano ya x na y kwenye grafu[

147258369

\haki]⎣⎢⎡​147​258​369​⎦⎥⎤​

you should just type

[[1,2,3],[4,5,6],[7,8,9]]

in the answer box below. (You can just modify the matrix that is currently written there.) Then click “Run.” You will not get any immediate feedback; the grade will be given when you submit the whole quiz.

[[0,0,0],[0,0,0],[0,0,0]]

 

Q3 .Referring to your drawing from Question 1, write R_{ab}Rab.. All elements of this matrix should be integers.

Write your matrix in the answer box below, using the format mentioned in questions 1 na 2, and click “Run.”

[[0,0,0],[0,0,0],[0,0,0]]

 

Q4. Referring back to Question 1, let R = R_{sb}R=Rsb​ be considered as a transformation operator consisting of a rotation about \hat{x}x^ by -90^\circ−90∘. Calculate R_1 = R_{sa} RR1​=Rsa.R, and think of R_{sa}Rsa​ as the representation of the initial orientation of {a} relative to {s}, RR as a rotation operation, and R_1R1​ as the new orientation of {a} after performing the rotation. The new orientation R_1R1​ corresponds to the orientation of the new {a} frame relative to {s} after rotating the original {a} frame by -90^\circ−90∘ about which axis?

  • The \hat{x}_{\textrm{a}}x^a​-axis of the {a} frame.
  • The \hat{x}_{\textrm{s}}x^s​-axis of the {s} frame.

Q5. Referring back to Question 1, use R_{sb}Rsb​ to change the representation of the point p_b = (1,2,3)^\intercallakini inaweza kuwa na faida ya kutosha kwamba helical itashinda juu ya fimbo ya muda mrefub​=(1,2,3) (ndani {b} coordinates) kwa {s} coordinates. All elements of this vector should be integers.

Ikiwa jibu lako ni

\Ni rahisi sana kutambua miingiliano ya x na y kwenye grafu[

123

\haki]⎣⎢⎡​123​⎦⎥⎤​

you should enter

[1,2,3]

in the text box below and click “Run.”

[0,0,0]

 

 

Q6. Referring back to Question 1, choose a point p represented by p_s = (1,2,3)^\intercalps​=(1,2,3)⊺ in {s} coordinates. Calculate q = R^\intercal_{sb} p_shapa kuna lebo za kitamaduni za tabia mbali mbali za mwili=Rsb⊺​ps.. Is qhapa kuna lebo za kitamaduni za tabia mbali mbali za mwili a representation of p in {b} coordinates?

  • Ndio.
  • Hapana.

Swali 7. Referring back to Question 1, an angular velocity wlakini haifanyi yaliyomo katika hisabati kuwa tofauti is represented in {s} as \omega_s = (3,2,1)^\intercalmwangazas​=(3,2,1). What is its representation \omega_amwangazaa.? All elements of this vector should be integers.

Ikiwa jibu lako ni

\Ni rahisi sana kutambua miingiliano ya x na y kwenye grafu[

123

\haki]⎣⎢⎡​123​⎦⎥⎤​

you should enter

[1,2,3]

in the text box below and click “Run.”

[0,0,0]

 

 

Q8. Referring back to Question 1, calculate the matrix logarithm [\hat{\omega}]\theta[mwangaza^]lakini haifanyi yaliyomo katika hisabati kuwa tofauti of R_{sa}Rsa​ by hand. (You may verify your answer with software.) Extract and enter the rotation amount \thetalakini haifanyi yaliyomo katika hisabati kuwa tofauti in radians with at least two decimal places.

  • 1
  • 0

 

 

Q9. Calculate the matrix exponential corresponding to the exponential coordinates of rotation \hat{\omega}\theta = (1,2,0)^\intercalmwangaza^lakini haifanyi yaliyomo katika hisabati kuwa tofauti=(1,2,0). The maximum allowable error for any matrix element is 0.01, so give enough decimal places where necessary.

Write your matrix in the answer box below, using the format mentioned in questions 1 na 2, and click “Run.”

[[0,0,0],[0,0,0],[0,0,0]]

 

 

Q10. Write the 3 \times 33×3 skew-symmetric matrix corresponding to \omega = (1,2,0.5)^\intercalmwangaza=(1,2,0.5). Confirm your answer using the function {\tt VecToso3}VecToso3 in the given software.

Write your matrix in the answer box below, using the format mentioned in questions 1 na 2, and click “Run.”

[[0,0,0],[0,0,0],[0,0,0]]

 

Q11. Use the function {\tt MatrixExp3}MatrixExp3 in the given software to calculate the rotation matrix R \in SO(3)RSO(3) corresponding to the matrix exponential of

[\hat{\omega}] \theta = \left[

0−0.510.50−2−120

\haki].[mwangaza^]lakini haifanyi yaliyomo katika hisabati kuwa tofauti=⎣⎢⎡​0−0.51​0.50−2​−120​⎦⎥⎤​.

The maximum allowable error for any matrix element is 0.01, so give enough decimal places where necessary.

Write your matrix in the answer box below, using the format mentioned in questions 1 na 2, and click “Run.”

[[0,0,0],[0,0,0],[0,0,0]]

 

 

Q12. Use the function {\tt MatrixLog3}MatrixLog3 in the given software to calculate the matrix logarithm [\hat{\omega}] \theta \in so(3)[mwangaza^]lakini haifanyi yaliyomo katika hisabati kuwa tofautistumia herufi ya kwanza ya neno(3) of rotation matrix

R = \left[

0−1000−1100

\haki].R=⎣⎢⎡​0−10​00−1​100​⎦⎥⎤​.

The maximum allowable error for any matrix element is 0.01, so give enough decimal places where necessary.

Write your matrix in the answer box below, using the format mentioned in questions 1 na 2, and click “Run.”

[[0,0,0],[0,0,0],[0,0,0]]

Wiki 04: Roboti za kisasa, Kozi 1: Foundations of Robot Motion Quiz Answers

Maswali 01 : Lecture Comprehension, Homogeneous Transformation Matrices (Sura 3 kupitia 3.3.1)

Q1. A 4×4 transformation matrix (element of SE(3)SE(3)) consists of a rotation matrix, a 3-vector, and a row consisting of three zeros and a one. What is the purpose of the row of 4 mara kwa mara?

  • This row is a historical artifact.
  • This row allows simple matrix operations for useful calculations.

Q2. Which of the following are possible uses of a transformation matrix? Chagua zote zinazotumika.

  • Displace (rotate and translate) a frame.
  • Displace a vector.
  • Change the frame of reference of a vector.
  • Represent the position and orientation of one frame relative to another.

Q3. The representation of a point p in the {b} frame is p_b \in \mathbb{R}^3pb​∈R3. To find the representation of this point in the {a} frame, we could write T_{ab} p_bTab.pb., but there is a dimension mismatch; p_bpb​ has only 3 Mfumo wa Umwagiliaji wa Smart, but T_{ab}Tab​ is 4×4. How do we alter p_bpb​ to allow this matrix operation?

  • Put a 1 in the last row of p_bpb., making it a 4-element column vector, and otherwise ignore the last row in your interpretation of the 4-vector.
  • Put a 0 in the last row of p_bpb., making it a 4-element column vector, and otherwise ignore the last row in your interpretation of the 4-vector.

Q4. Which of these is a valid calculation of T_{ab}Tab., the configuration of the frame {b} relative to {a}? Chagua zote zinazotumika.

  • T_{ac} T_{cb}Tac.Tcb.
  • T_{cb} T_{ac}Tcb.Tac.
  • T_{ac} T^{-1}_{dc} T_{db}Tac.Tdc−1​Tdb.
  • (T_{bc} T_{ca})^{-1}(Tbc.Tca.)−1

Maswali 02 : Lecture Comprehension, Twists (Sura 3.3.2, Sehemu 1 ya 2)

Q1. Any instantaneous spatial velocity of a rigid body is equivalent to the motion of the body if it were simultaneously translating along, and rotating about, a screw axis \mathcal{S} = (\mathcal{S}_\omega, \mathcal{S}_v) \in \mathbb{R}^6S=(Smwangaza.,SAZ-500.)∈R6. The screw axis is a normalized representation of the direction of motion, and \dot{\theta}lakini haifanyi yaliyomo katika hisabati kuwa tofauti˙ represents how fast the body moves in that direction of motion, so that the twist is given by \mathcal{V} = \mathcal{S}\nukta{\theta} \in \mathbb{R}^6V=Slakini haifanyi yaliyomo katika hisabati kuwa tofauti˙∈R6. The normalized screw axis for full spatial motions is analogous to the normalized (unit) angular velocity axis for pure rotations.

The pitch hna kuifikisha pale inapohitajika of the screw axis is defined as the ratio of the linear speed over the angular speed. Which of the following is true? Chagua zote zinazotumika.

  • If the pitch hna kuifikisha pale inapohitajika is infinite, then \mathcal{S}_\omega = 0Smwangaza​=0 and \|\mathcal{S}_v\| = 1∥SAZ-500​∥=1.
  • If the pitch hna kuifikisha pale inapohitajika is infinite, hufafanuliwa kama nishati iliyohifadhiwa katika kitu kwa sababu ya mwendo wake \|\mathcal{S}_\omega\| = 1∥Smwangaza​∥=1 and \mathcal{S}_vSAZ-500​ is arbitrary.
  • If the pitch hna kuifikisha pale inapohitajika is finite, then \mathcal{S}_\omega = 0Smwangaza​=0 and \|\mathcal{S}_v\| = 1∥SAZ-500​∥=1.
  • If the pitch hna kuifikisha pale inapohitajika is finite, hufafanuliwa kama nishati iliyohifadhiwa katika kitu kwa sababu ya mwendo wake \|\mathcal{S}_\omega\| = 1∥Smwangaza​∥=1 and \mathcal{S}_vSAZ-500​ is arbitrary.

Q2. You are sitting on a horizontal rotating turntable, like a merry-go-round at an amusement park. It rotates counterclockwise when viewed from above. Your body frame {b} has an \hat{{\rm x}}_bx^b​-axis pointing outward (away from the center of the turntable), a \hat{{\rm y}}_by^​b​-axis pointing in the direction the turntable is moving at your location (the direction your eyes are looking), and a \hat{{\rm z}}_bz^b​-axis pointing upward. The turntable is rotating at 0.1 radians per second, and you are sitting 3 meters from the center of the turntable. What is the screw axis \mathcal{S} = (\mathcal{S}_\omega, \mathcal{S}_v)S=(Smwangaza.,SAZ-500.) and the twist \mathcal{V} = (\omega,AZ-500)V=(mwangaza,AZ-500) expressed in your body frame {b}? All angular velocities are in radians/second and all linear velocities are in meters/second.

  • \mathcal{S} = (0, 0, 0.1, 0, 0.3, 0), \;\; \mathcal{V} = (0, 0, 0.01, 0, 0.03, 0)S=(0,0,0.1,0,0.3,0),V=(0,0,0.01,0,0.03,0)
  • \mathcal{S} = (0, 0, 1, 0, 3, 0), \;\; \mathcal{V} = (0, 0, 0.1, 0, 0.3, 0)S=(0,0,1,0,3,0),V=(0,0,0.1,0,0.3,0)
  • \mathcal{S} = (1, 0, 0, 0, 3, 0), \;\; \mathcal{V} = (0.1, 0, 0, 0, 0.3, 0)S=(1,0,0,0,3,0),V=(0.1,0,0,0,0.3,0)

Q3. A twist or a screw axis can be represented in any frame. Which of the following statements are true? Chagua zote zinazotumika.

  • A spatial twist is a representation of the twist in the space frame {s}, and it does not depend on a body frame {b}.
  • A body twist is a representation of the twist in the body frame {b}, and it does not depend on a space frame {s}.

Maswali 03 : Lecture Comprehension, Twists (Sura 3.3.2, Sehemu 2 ya 2)

Q1. What is the dimension of the matrix adjoint representation [{\rm Ad}_T][AdT.] of a transformation matrix TT (an element of SE(3)SE(3))?

  • 3×3
  • 4×4
  • 6×6

Q2. A 3-vector angular velocity \omegamwangaza can be represented in matrix form as [\omega][mwangaza], an element of so(3)KOZI(3), the set of 3×3 skew-symmetric matrices. Analogously, a 6-vector twist \mathcal{V} = (\omega,AZ-500)V=(mwangaza,AZ-500) can be represented in matrix form as [\mathcal{V}][V], an element of se(3)se(3). What is the dimension of [\mathcal{V}][V]?

  • 3×3
  • 4×4
  • 6×6

Maswali 04 : Lecture Comprehension, Exponential Coordinates of Rigid-Body Motion (Sura 3.3.3)

Q1. Although we use six numbers to represent a screw \mathcal{S} = (\mathcal{S}_\omega,\mathcal{S}_v)S=(Smwangaza.,SAZ-500.), the space of all screws is only 5-dimensional. Kwanini?

  • \mathcal{S}_\omegaSmwangaza​ must be unit length.
  • \mathcal{S}_vSAZ-500​ must be unit length.
  • Either \mathcal{S}_\omegaSmwangaza​ or \mathcal{S}_vSAZ-500​ must be unit length.

Q2. A transformation matrix T_{ab}Tab., anayewakilisha {b} relative to {a}, can be represented using the 6-vector exponential coordinates \mathcal{S}\thetaSlakini haifanyi yaliyomo katika hisabati kuwa tofauti, where \mathcal{S}S is a screw axis (represented in {a} coordinates) and \thetalakini haifanyi yaliyomo katika hisabati kuwa tofauti is the distance followed along the screw axis that displaces {a} kwa {b}. Which of the following is correct? Chagua zote zinazotumika.

  • T_{ab} = e^{\mathcal{S}\theta}Tab​=eSlakini haifanyi yaliyomo katika hisabati kuwa tofauti
  • T_{ab} = e^{[\mathcal{S}]\theta}Tab​=e[S]lakini haifanyi yaliyomo katika hisabati kuwa tofauti
  • T_{ab} = e^{[\mathcal{S}\theta]}Tab​=e[Slakini haifanyi yaliyomo katika hisabati kuwa tofauti]
  • T_{ab} = e^{\mathcal{S}[\theta]}Tab​=eS[lakini haifanyi yaliyomo katika hisabati kuwa tofauti]

Q3. The matrix representation of the exponential coordinates \mathcal{S}\theta \in \mathbb{R}^6Slakini haifanyi yaliyomo katika hisabati kuwa tofauti∈R6 is [\mathcal{S}\theta][Slakini haifanyi yaliyomo katika hisabati kuwa tofauti]. What space does [\mathcal{S}\theta][Slakini haifanyi yaliyomo katika hisabati kuwa tofauti] belong to?

  • SONAR(3)
  • KOZI(3)
  • SE(3)
  • se(3)

Q4. T_{ab’} = T_{ab} e^{[\mathcal{S}\theta]}Tab′​=Tab.e[Slakini haifanyi yaliyomo katika hisabati kuwa tofauti] is a representation of the new frame {b’} (relative to {a}) achieved after {b} has followed

  • the screw axis \mathcal{S}S, expressed in {b} coordinates, a distance \thetalakini haifanyi yaliyomo katika hisabati kuwa tofauti.
  • the screw axis \mathcal{S}S, expressed in {a} coordinates, a distance \thetalakini haifanyi yaliyomo katika hisabati kuwa tofauti.

Q5. T_{ab’} = e^{[\mathcal{S}\theta]} T_{ab}Tab′​=e[Slakini haifanyi yaliyomo katika hisabati kuwa tofauti]Tab​ is a representation of the new frame {b’} (relative to {a}) achieved after {b} has followed

  • the screw axis \mathcal{S}S, expressed in {b} coordinates, a distance \thetalakini haifanyi yaliyomo katika hisabati kuwa tofauti.
  • the screw axis \mathcal{S}S, expressed in {a} coordinates, a distance \thetalakini haifanyi yaliyomo katika hisabati kuwa tofauti.

Q6. Which of the following statements is true? Chagua zote zinazotumika.

  • The matrix exponential maps [\mathcal{S}\theta] \in se(3)[Slakini haifanyi yaliyomo katika hisabati kuwa tofauti]se(3) to a transformation matrix T \in SE(3)TSE(3), where TT is the representation of the frame (relative to {s}) that is achieved by following the screw \mathcal{S}S (expressed in {s}) a distance \thetalakini haifanyi yaliyomo katika hisabati kuwa tofauti from the identity configuration (i.e., a frame initially coincident with {s}).
  • The matrix exponential maps [\mathcal{V}] \in se(3)[V]se(3) to a transformation matrix T \in SE(3)TSE(3), where TT is the representation of the frame (relative to {s}) that is achieved by following the twist \mathcal{V}V (expressed in {s}) for unit time from the identity configuration (i.e., a frame initially coincident with {s}).
  • The matrix log maps an element of se(3)se(3) to an element of SE(3)SE(3).
  • The matrix log maps an element of SE(3)SE(3) to an element of se(3)se(3).
  • There is a one-to-one mapping between twists and elements of se(3)se(3).

Maswali 05 : Lecture Comprehension, Wrenches (Sura 3.4)

Q1. A wrench \mathcal{F}_aFa​ consists of a linear force f_a \in \mathbb{R}^3fa​∈R3 and a moment m_a \in \mathbb{R}^3ma​∈R3, both expressed in the frame {a}. How do we usually write the wrench?

  • \mathcal{F}_a = (m_a,f_a)Fa​=(ma.,fa.)
  • \mathcal{F}_a = (f_a,m_a)Fa​=(fa.,ma.)

Q2. We know that the power associated with a wrench and twist pair (\mathcal{F},\mathcal{V})(F,V) does not depend on whether they are represented in the frame {a} Aina hii ya upotezaji wa nywele kawaida huathiri tu kichwani (\mathcal{F}_a,\mathcal{V}_a)(Fa.,Va.) or the frame {b} Aina hii ya upotezaji wa nywele kawaida huathiri tu kichwani (\mathcal{F}_b,\mathcal{V}_b)(Fb.,Vb.). Kwa hiyo, we can write \mathcal{F}_a^{\rm T} \mathcal{V}_a = \mathcal{F}_b^{\rm T} \mathcal{V}_bFaT​Va​=FbT​Vb​ and then use which identity to derive the equation \mathcal{F}_a = [{\rm Ad}_{T_{ba}}]^{\rm T} \mathcal{F}_bFa​=[AdTba​​]TFb​ relating the representations \mathcal{F}_aFa​ and \mathcal{F}_bFb.? (Pia, remember the matrix identity (AB)^{\rm T} = B^{\rm T} A^{\rm T}(AB)T=BTAT.)

  • \mathcal{V}_a = T_{ab} \mathcal{V}_bVa​=Tab​Vb.
  • \mathcal{V}_a = T_{ba} \mathcal{V}_bVa​=Tba​Vb.
  • \mathcal{V}_a = [{\rm Ad}_{T_{ba}}] \mathcal{V}_bVa​=[AdTba​​]Vb.
  • \mathcal{V}_a = [{\rm Ad}_{T_{ab}}] \mathcal{V}_bVa​=[AdTab​​]Vb.

Maswali 06 : Chapters 3.3 na 3.4, Rigid-Body Motions

Q1. In terms of the \hat{x}_{\textrm{s}}x^s​, \hat{Y}_{\textrm{s}}Y^​s​, \hat{ni mlinganyo halali wa kihisabati ikiwa}_{\textrm{s}}ni mlinganyo halali wa kihisabati ikiwa^s​ coordinates of a fixed space frame {s}, the frame {a} has its \hat{x}_{\textrm{a}}x^a​-axis pointing in the direction (0,0,1)(0,0,1) and its \hat{Y}_{\textrm{a}}Y^​a​-axis pointing in the direction (-1,0,0)(−1,0,0), and frame {b} has its \hat{x}_{\textrm{b}}x^b​-axis pointing in the direction (1,0,0)(1,0,0) and its \hat{Y}_{\textrm{b}}Y^​b​-axis pointing in the direction (0,0,-1)(0,0,−1). The origin of {a} is at (0,0,1)(0,0,1) ndani {s} and the origin of {b} is at (0,2,0)(0,2,0). Draw the {s}, {a}, na {b} muafaka, similar to examples in the book and videos, for easy reference in this question and later questions.

Write the transformation matrix T_{sa}Tsa.. All elements of this matrix should be integers.

Enter your matrix in the answer box (just modify the matrix already shown there) and click “Run.” Your answer will not be evaluated until you submit the quiz.

[[1,2,3,4],[5,6,7,8],[9,10,11,12],[0,0,0,1]] for \left[

1590261003711048121

\haki]⎣⎢⎢⎢⎡​1590​26100​37110​48121​⎦⎥⎥⎥⎤​.

[[0,0,0,0],[0,0,0,0],[0,0,0,0],[0,0,0,1]]

Q2. Referring back to Question 1, write T_{sb}^{-1}Tsb−1​. All elements of this matrix should be integers.

Enter your matrix in the answer box (just modify the matrix already shown there) and click “Run.” Your answer will not be evaluated until you submit the quiz.

[[1,2,3,4],[5,6,7,8],[9,10,11,12],[0,0,0,1]] for \left[

1590261003711048121

\haki]⎣⎢⎢⎢⎡​1590​26100​37110​48121​⎦⎥⎥⎥⎤​

[[0,0,0,0],[0,0,0,0],[0,0,0,1],[0,0,0,1]]

 

 

Q3. Referring back to Question 1, write T_{ab}Tab.. All elements of this matrix should be integers.

Enter your matrix in the answer box (just modify the matrix already shown there) and click “Run.” Your answer will not be evaluated until you submit the quiz.

[[1,2,3,4],[5,6,7,8],[9,10,11,12],[0,0,0,1]] for \left[

1590261003711048121

\haki]⎣⎢⎢⎢⎡​1590​26100​37110​48121​⎦⎥⎥⎥⎤​.

[[0,0,0,0],[0,0,0,0],[0,0,0,1],[0,0,0,1]]

Q4. Referring back to Question 1, let T = T_{sb}T=Tsb​ be considered as a transformation operator consisting of a rotation about \hat{x}x^ by -90^\circ−90∘ and a translation along \hat{Y}Y^​ by 2 vitengo. Calculate T_1 = T T_{sa}T1​=TTsa., and think of T_{sa}Tsa​ as the representation of the initial configuration of {a} relative to {s}, TT as a transformation operation, and T_1T1​ as the new configuration of {a} after performing the transformation. Are the rotation axis \hat{x}x^ and translation axis \hat{Y}Y^​ of the transformation TT properly considered to be expressed in the frame {s} or the frame {a}?

1 hatua

  • The frame {s}.
  • The frame {a}.

Q5. Referring back to Question 1, use T_{sb}Tsb​ to change the representation of the point p_b = (1,2,3)^\intercallakini inaweza kuwa na faida ya kutosha kwamba helical itashinda juu ya fimbo ya muda mrefub​=(1,2,3) (ndani {b} coordinates) kwa {s} coordinates. All elements of this vector should be integers.

Enter your vector in the answer box (just modify the vector already shown there) and click “Run.” Your answer will not be evaluated until you submit the quiz.

[1,2,3] for \left[

123

\haki]⎣⎢⎡​123​⎦⎥⎤​.

[0,0,0]

Q6. Referring back to Question 1, choose a point p represented by p_s = (1,2,3)^\intercallakini inaweza kuwa na faida ya kutosha kwamba helical itashinda juu ya fimbo ya muda mrefus​=(1,2,3)⊺ in {s} coordinates. Calculate q = T_{sb} p_shapa kuna lebo za kitamaduni za tabia mbali mbali za mwili=Tsb.lakini inaweza kuwa na faida ya kutosha kwamba helical itashinda juu ya fimbo ya muda mrefus.. Is qhapa kuna lebo za kitamaduni za tabia mbali mbali za mwili a representation of p in {b} coordinates?

1 hatua

  • Ndio
  • Hapana

Swali 7. Referring back to Question 1, a twist \mathcal{V}V is represented in {s} Aina hii ya upotezaji wa nywele kawaida huathiri tu kichwani {\mathcal V}_s = (3,2,1,-1,-2,-3)^\intercalVs​=(3,2,1,−1,−2,−3). What is its representation {\mathcal V}_aVa.? All elements of this vector should be integers.

Enter your vector in the answer box (just modify the vector already shown there) and click “Run.” Your answer will not be evaluated until you submit the quiz.

[1,2,3,4,5,6] for \left[

123456

\haki]⎣⎢⎢⎢⎢⎢⎢⎢⎡​123456​⎦⎥⎥⎥⎥⎥⎥⎥⎤​.

[0,0,0,0,0,0]

Q8. Referring back to Question 1, calculate the matrix logarithm [{\mathcal S}]\theta[S]lakini haifanyi yaliyomo katika hisabati kuwa tofauti of T_{sa}Tsa.. Write the rotation amount \thetalakini haifanyi yaliyomo katika hisabati kuwa tofauti in radians with at least 2 decimal places.

0

Q9. Calculate the matrix exponential corresponding to the exponential coordinates of rigid-body motion {\mathcal S}\theta = (0,1,2,3,0,0)^\intercalSlakini haifanyi yaliyomo katika hisabati kuwa tofauti=(0,1,2,3,0,0). The maximum allowable error for any matrix element is 0.01, so give enough decimal places where necessary.

Enter your matrix in the answer box (just modify the matrix already shown there) and click “Run.” Your answer will not be evaluated until you submit the quiz.

[[1.11,2.22,3.33],[4.44,5.55,6.66],[7.77,8.88,9.99]] for \left[

1.114.447.772.225.558.883.336.669.99

\haki]⎣⎢⎡​1.114.447.77​2.225.558.88​3.336.669.99​⎦⎥⎤​.

[[0,0,0,0],[0,0,0,0],[0,0,0,1],[0,0,0,1]]

Q10. Referring back to Question 1, use T_{sb}Tsb​ to change the representation of the wrench Fb=(1,0,0,2,1,0) (ndani {b} coordinates) kwa {s} coordinates. All elements of this vector should be integers.

Enter your vector in the answer box (just modify the vector already shown there) and click “Run.” Your answer will not be evaluated until you submit the quiz.

[1,2,3] for \left[

123

\haki]⎣⎢⎡​123​⎦⎥⎤​.

[0,0,0,0,0,0]

Q11. Use the function {\tt TransInv}TransInv in the given software to calculate the inverse of the homogeneous transformation matrix

T = \left[

0100−100000103011

\haki].T=⎣⎢⎢⎢⎡​0100​−1000​0010​3011​⎦⎥⎥⎥⎤​.

All elements of this matrix should be integers.

Enter your matrix in the answer box (just modify the matrix already shown there) and click “Run.” Your answer will not be evaluated until you submit the quiz.

[[1,2,3],[4,5,6],[7,8,9]] for \left[

147258369

\haki]⎣⎢⎡​147​258​369​⎦⎥⎤​.

[[0,0,0,0],[0,0,0,0],[0,0,0,1],[0,0,0,1]]

Q12. Write the se(3)se(3) matrix corresponding to the twist V=(1,0,0,0,2,3). All elements of this matrix should be integers. Confirm your answer using the function {\tt VecTose3}VecTose3 in the given software.

Enter your matrix in the answer box (just modify the matrix already shown there) and click “Run.” Your answer will not be evaluated until you submit the quiz.

[[1,2,3],[4,5,6],[7,8,9]] for \left[

147258369

\haki]⎣⎢⎡​147​258​369​⎦⎥

[[0,0,0,0],[0,0,0,0],[0,0,0,1],[0,0,0,0]]

Q13. Use the function {\tt ScrewToAxis}ScrewToAxis in the given software to calculate the normalized screw axis representation S of the screw described by a unit vector \hat{s} = (1,0,0)s^=(1,0,0) in the direction of the screw axis, located at the point p = (0,0,2)lakini inaweza kuwa na faida ya kutosha kwamba helical itashinda juu ya fimbo ya muda mrefu=(0,0,2), with pitch h = 1na kuifikisha pale inapohitajika=1. All elements of this vector should be integers.

Enter your vector in the answer box (just modify the vector already shown there) and click “Run.” Your answer will not be evaluated until you submit the quiz.

[1,2,3] for \left[

123

\haki]⎣⎢⎡​123​⎦⎥⎤​.

[0,0,0,0,0,0]

Q14. Use the function {\tt MatrixExp6}MatrixExp6 in the given software to calculate the homogeneous transformation matrix T \in SE(3)TSE(3) corresponding to the matrix exponential of

[S]lakini haifanyi yaliyomo katika hisabati kuwa tofauti=⎡⎣⎢⎢01.570800−1.570800000002.3562−2.356210⎤⎦⎥⎥.

All elements of this matrix should be integers.

Enter your matrix in the answer box (just modify the matrix already shown there) and click “Run.” Your answer will not be evaluated until you submit the quiz.

[[1,2,3],[4,5,6],[7,8,9]] for \left[

147258369

\haki]⎣⎢⎡​147​258​369​⎦⎥⎤​.

[[0,0,0,0],[0,0,0,0],[0,0,0,0],[0,0,0,1]]

Q15. Use the function {\tt MatrixLog6}MatrixLog6 in the given software to calculate the matrix logarithm [S]lakini haifanyi yaliyomo katika hisabati kuwa tofautise(3) of the homogeneous transformation matrix

T = \left[

0100−100000103011

\haki].T=⎣⎢⎢⎢⎡​0100​−1000​0010​3011​⎦⎥⎥⎥⎤​.

The maximum allowable error for any matrix element is 0.01, so give enough decimal places where necessary.

Enter your matrix in the answer box (just modify the matrix already shown there) and click “Run.” Your answer will not be evaluated until you submit the quiz.

[[1.11,2.22,3.33],[4.44,5.55,6.66],[7.77,8.88,9.99]] for \left[

1.114.447.772.225.558.883.336.669.99

\haki]⎣⎢⎡​1.114.447.77​2.225.558.88​3.336.669.99​⎦⎥⎤​.

[[0,0,0,0],[0,0,0,0],[0,0,0,1],[0,0,0,0]]

Mwandishi

  • Helen Bassey

    Okta, I'm Helena, mwandishi wa blogu ambaye ana shauku ya kuchapisha yaliyomo ndani ya niche ya elimu. Ninaamini kuwa elimu ni ufunguo wa maendeleo binafsi na kijamii, na ninataka kushiriki ujuzi na uzoefu wangu na wanafunzi wa umri na asili zote. Kwenye blogi yangu, utapata makala juu ya mada kama vile mikakati ya kujifunza, elimu mtandaoni, mwongozo wa kazi, na zaidi. Pia ninakaribisha maoni na mapendekezo kutoka kwa wasomaji wangu, kwa hivyo jisikie huru kuacha maoni au kuwasiliana nami wakati wowote. Natumai utafurahiya kusoma blogi yangu na unaona kuwa ni muhimu na ya kutia moyo.

    Tazama machapisho yote

Kuhusu Helen Bassey

Okta, I'm Helena, mwandishi wa blogu ambaye ana shauku ya kuchapisha yaliyomo ndani ya niche ya elimu. Ninaamini kuwa elimu ni ufunguo wa maendeleo binafsi na kijamii, na ninataka kushiriki ujuzi na uzoefu wangu na wanafunzi wa umri na asili zote. Kwenye blogi yangu, utapata makala juu ya mada kama vile mikakati ya kujifunza, elimu mtandaoni, mwongozo wa kazi, na zaidi. Pia ninakaribisha maoni na mapendekezo kutoka kwa wasomaji wangu, kwa hivyo jisikie huru kuacha maoni au kuwasiliana nami wakati wowote. Natumai utafurahiya kusoma blogi yangu na unaona kuwa ni muhimu na ya kutia moyo.

Acha jibu