Jiandikishe sasa

Ingia

Nenosiri lililopotea

Umepoteza nywila yako? Tafadhali ingiza anwani yako ya barua pepe. Utapokea kiunga na utaunda nywila mpya kupitia barua pepe.

Ongeza chapisho

Lazima uingie ili kuongeza chapisho .

Ongeza swali

Lazima uingie ili kuuliza swali.

Ingia

Jiandikishe sasa

Karibu kwenye Scholarsark.com! Usajili wako utakupa ufikiaji wa kutumia huduma zaidi za jukwaa hili. Unaweza kuuliza maswali, toa michango au toa majibu, angalia maelezo mafupi ya watumiaji wengine na mengi zaidi. Jiandikishe sasa!

Kujifunza kwa Mashine kwa Vitendo: Miradi ya Ulimwengu Halisi,Uchunguzi kifani

Kujifunza kwa Mashine kwa Vitendo: Miradi ya Ulimwengu Halisi,Uchunguzi kifani

Bei: $59.99

Katika somo hili, you will discover how to develop and evaluate a model for the imbalanced adult income classification dataset.

After completing this tutorial, you will know:

  • How to load and explore the dataset and generate ideas for data preparation and model selection.

  • How to systematically evaluate a suite of machine learning models with a robust test harness.

  • How to fit a final model and use it to predict class labels for specific cases.

Many binary classification tasks do not have an equal number of examples from each class, k.m. the class distribution is skewed or imbalanced.

A popular example is the adult income dataset that involves predicting personal income levels as above or below $50,000 per year based on personal details such as relationship and education level. There are many more cases of incomes less than $50K than above $50K, although the skew is not severe.

Mwandishi

Kuhusu arkadmin

Acha jibu