Python for beginners using sample projects.
कीमत: $19.99
What’s the best way to learn any technology , by doing a PROJECT. That’s what exactly this tutorial intends to do. This course teaches Python machine learning using project based approach. Below is the full syllabus for the same. हैप्पी लर्निंग.
अध्याय 1:- Installing Python framework and Pycharm IDE.
अध्याय 2:- Creating and Running your first Python project.
अध्याय 3:- Python is case-sensitive
अध्याय 4:- चर, data types, inferrence & प्रकार()
अध्याय 5:- Python is a dynamic language
अध्याय 6:- Comments in python
अध्याय 7:- Creating function, whitespaces & indentation
अध्याय 8:- Importance of new line
अध्याय 9:- List in python, अनुक्रमणिका, Range & Negative Indexing
अध्याय 10:- For loops and IF conditions
अध्याय 11:- जोश, जोश 8, Python enhancement proposal
अध्याय 12:- ELSE and ELSE IF
अध्याय 13:- Array vs Python
अध्याय 14:- Reading text files in Python
अध्याय 15:- Casting and Loss of Data
अध्याय 16:- Referencing external libararies
अध्याय 17:- Applying linear regression using sklearn
अध्याय 18:- Creatiing classes and objects.
अध्याय 19:- What is Machine learning?
अध्याय 20:- Algoritham and Training data.
अध्याय 21:- वैक्टर.
अध्याय 22:- Models in Machine Learning.
अध्याय 23:- Features and Labels.
अध्याय 24:- Bag of words.
अध्याय 25:- Implementing BOW using SKLearn.
अध्याय 26:- The fit Method.
अध्याय 27:- StopWords.
अध्याय 28:- The transform Method.
अध्याय 29:- Zip and Unzip.
अध्याय 30:- Project Article Auto tagging.
अध्याय 31 :- Understanding Article auto tagging in more detail.
अध्याय 32 :- Planning the code of the project.
अध्याय 33 :- Looping through the files of the directory.
अध्याय 34 :- Reading the file in the document collection
अध्याय 35 :- Understanding Vectorizer , Document and count working.
अध्याय 36 :- Calling Fit and Transform to extract Vocab and Count.
अध्याय 37 :- Understanding the count and Vocab collection data.
अध्याय 38 :- Count and Vocab structure complexity
अध्याय 39 :- Converting CSR matrix to COO matrix
अध्याय 40 :- Creating the BOW text file.
अध्याय 41 :- Restricting Stop words.
अध्याय 42 :- Array vs List revisited
अध्याय 43 :- Referencing Numpy and Pandas
अध्याय 44 :- Creating a numpy array
अध्याय 45 :- Numpy Array vs Normal Python array
अध्याय 46 :- Why do we need Pandas ?
अध्याय 47 :- Revising Arrays vs Numpy Array vs Pandas
अध्याय 47 :- Corupus / क्यूए और टीम के सदस्यों की भूमिकाएं और जिम्मेदारियां, Document and Terms.
अध्याय 48 :- Understanding TF
अध्याय 49 :- Understanding IDF
अध्याय 50 :- TF IDF.
अध्याय 51 :- Performing calculations of TF IDF.
अध्याय 52 :- Implementing TF IDF using SkLearn
अध्याय 53 :- IDF calculation in SkLearn.
उत्तर छोड़ दें
आपको चाहिए लॉग इन करें या रजिस्टर करें एक नई टिप्पणी जोड़ने के लिए .