سجل الآن

تسجيل دخول

فقدت كلمة المرور

فقدت كلمة المرور الخاصة بك؟ الرجاء إدخال عنوان البريد الإلكتروني الخاص بك. ستتلقى رابطا وستنشئ كلمة مرور جديدة عبر البريد الإلكتروني.

أضف مقالة جديدة

‎يجب تسجيل الدخول لتستطيع أضافة مقالة .

أضف سؤال جديد

يجب عليك تسجيل الدخول لطرح سؤال.

تسجيل دخول

سجل الآن

مرحبا بكم في Scholarsark.com! سوف تسجيلك تمنح لك الوصول إلى استخدام المزيد من الميزات من هذا المنبر. يمكنك طرح الأسئلة, تقديم مساهمات أو تقديم إجابات, عرض لمحات من المستخدمين الآخرين، وغيرها الكثير. سجل الان!

التعلم الآلي العملي: مشاريع العالم الحقيقي,دراسات الحالة

التعلم الآلي العملي: مشاريع العالم الحقيقي,دراسات الحالة

السعر: $59.99

In this tutorial, you will discover how to develop and evaluate a model for the imbalanced adult income classification dataset.

After completing this tutorial, you will know:

  • How to load and explore the dataset and generate ideas for data preparation and model selection.

  • How to systematically evaluate a suite of machine learning models with a robust test harness.

  • How to fit a final model and use it to predict class labels for specific cases.

Many binary classification tasks do not have an equal number of examples from each class, منها مثلا. the class distribution is skewed or imbalanced.

A popular example is the adult income dataset that involves predicting personal income levels as above or below $50,000 per year based on personal details such as relationship and education level. There are many more cases of incomes less than $50K than above $50K, although the skew is not severe.

مؤلف

عن arkadmin

‎إضافة تعليق