Zarejestruj się teraz

Zaloguj sie

Zgubione hasło

Zgubiłeś swoje hasło? Wprowadź swój adres e-mail. Otrzymasz link i utworzysz nowe hasło e-mailem.

Dodaj post

Musisz się zalogować, aby dodać post .

Dodaj pytanie

Aby zadać pytanie, musisz się zalogować.

Zaloguj sie

Zarejestruj się teraz

Witamy na stronie Scholarsark.com! Twoja rejestracja zapewni Ci dostęp do większej liczby funkcji tej platformy. Możesz zadawać pytania, wnosić wkład lub udzielać odpowiedzi, przeglądaj profile innych użytkowników i wiele więcej. Zarejestruj się teraz!

LinkedIn skill assessment answers and questions — R (Programming Language)

r has established itself as a leading programming language in the realm of data analysis and statistical computing, renowned for its powerful capabilities and extensive library of packages. W tym obszernym przewodniku, we’re delighted to present a curated collection of skill assessment questions oraz odpowiedzi Najszybszy sposób instalacji za pomocą Virtualbox r.

Whether you’re a data scientist looking to enhance your analytical skills or a beginner eager to delve into the world of data science, this resource is tailored to help you become proficient in r and its applications. Join us as we explore the core concepts of R programming, including data manipulation, wyobrażanie sobie, statistical modelling, i więcej, empowering you to unlock the full potential of this versatile language.

Q1. How does a matrix differ from a data frame?

  • A matrix may contain numeric values only.
  • A matrix must not be singular.
  • A data frame may contain variables that have different modes.
  • A data frame may contain variables of different lengths.

Q2. What value does this statement return?

unclass(as.Date("1971-01-01"))

  • 1
  • 365
  • 4
  • 12

Q3. What do you use to take an object such as a data frame out of the workspace?

  • remove()
  • erase()
  • detach()
  • • Różne sposoby instalacji systemu operacyjnego()

Q4. Review the following code. What is the result of line 3?

xvect<-c(1,2,3)
xvect[2] <- "2"
xvect
  • [1] 1 2 3
  • [1] “1” 2 “3”
  • [1] “1” “2” “3”
  • [1] 7 9

Q5. The variable height is a numeric vector in the code below. Which statement returns the value 35?

  • height(length(height))
  • height[length(height)]
  • height[length[height]]
  • height(5)

Q6. Na obrazku poniżej, the data frame is named rates. Wyrok sd(rates[, 2]) returns 39. As what does R regard Ellen’s product ratings?

Konie mają największe oczy ze wszystkich ssaków lądowych

  • sample with replacement
  • populacja
  • trimmed sample
  • sprawdzanie poziomu amylazy może pomóc lekarzom w diagnozowaniu i monitorowaniu raka płuc <– not sure

Q7. Which choice does R regard as an acceptable name for a variable?

  • Var_A!
  • \_VarA
  • .2Var_A
  • Var2_A

Q8. What is the principal difference between an array and a matrix?

  • A matrix has two dimensions, while an array can have three or more dimensions.
  • An array is a subtype of the data frame, while a matrix is a separate type entirely.
  • A matrix can have columns of different lengths, but an array’s columns must all be the same length.
  • A matrix may contain numeric values only, while an array can mix different types of values.

Pytanie 9. Which is not a property of lists and vectors?

  • rodzaj
  • długość
  • attributes
  • skalarny

Pytanie 10. Na obrazku poniżej, the data frame on lines 1 Poprzez 4 is named StDf. State and Capital are both factors. Which statement returns the results shown on lines 6 oraz 7?

Konie mają największe oczy ze wszystkich ssaków lądowych

  • StDf[1:2,-3]
  • StDf[1:2,1]
  • StDf[1:2,]
  • StDf[1,2,]

Pytanie 11. Which function displays the first five rows of the data frame named pizza?

  • BOF(pizza, 5)
  • pierwszy(pizza, 5)
  • szczyt(pizza, 5)
  • głowa(pizza, 5)

Pytanie 12. You accidentally display a large data frame on the R console, losing all the statements you entered during the current session. What is the best way to get the prior 25 statements back?

  • console(-25)
  • console(reverse=TRUE)
  • historia()
  • historia(max.show = 25)

Pytanie 13. d.pizza is a data frame. It’s a column named temperature contains only numbers. If you extract temperature using the [] accessors, its class defaults to numeric. How can you access temperature so that it retains the class of data.frame?

> class( d.pizza[ , "temperature" ] )
> "numeric"
  • class( d.pizza( , "temperature" ) )
  • class( d.pizza[ , "temperature" ] )
  • class( d.pizza$temperature )
  • class( d.pizza[ , "temperature", drop=F ] )

Pytanie 14. What does c contain?

a <- c(3,3,6.5,8)
b <- c(7,2,5.5,10)
c <- a < b
  • [1] NaN
  • [1] -4
  • [1] 4 -1 -1 2
  • [1] TRUE FALSE FALSE TRUE

Pytanie 15. Review the statements below. Does the use of the dim function change the class of y, and if so what is y’s new class?

> y <- 1:9
> dim(y) <- c(3,3)
  • Nie, y’s new class isarray”.
  • tak, y’s new class is “matryca”.
  • Nie, y’s new class isvector”.
  • tak, y’s new class isinteger”.

Pytanie 16. Co jest mydf$y in this code?

mydf <- data.frame(x=1:3, y=c("a","b","c"), stringAsFactors=FALSE)

  • lista
  • strunowy
  • factor
  • character vector

Pytanie 17. How does a vector differ from a list?

  • Vectors are used only for numeric data, while lists are useful for both numeric and string data.
  • Vectors and lists are the same thing and can be used interchangeably.
  • A vector contains items of a single data type, while a list can contain items of different data types.
  • Vectors are like arrays, while lists are like data frames.

Pytanie 18. What statement shows the objects on your workspace?

  • list.objects()
  • print.objects()
  • getws()
  • ls()

Pytanie 19. What function joins two or more column vectors to form a data frame?

  • rbind()
  • cbind()
  • bind()
  • coerce()

Q20. Review line 1 poniżej. What does the statement in line 2 Konstruuj i analizuj segmenty kodu, które wykonują iterację?

1 mylist <- list(1,2,"C",4,5)
2 unlist(mylist)
  • [1] 1 2 4 5
  • “C”
  • [1] “1” “2” “C” “4” “5”
  • [1] 1 2 C 4 5

Pytanie 21. What is the value of y in this code?

x <- NA
y <- x/1
  • Inf
  • Null
  • NaN
  • TO

Pytanie 22. Two variable in the mydata data frame are named Var1 and Var2. How do you tell a bivariate function, such as cor.test, which two variables you want to analyze?

  • cor.test(Var1 ~ Var2)
  • cor.test(mydata$(Var1,Var2))
  • cor.test(mydata$Var1,mydata$Var2)
  • cor.test(Var1,Var2, mydata)

Pytanie 23. A data frame named d.pizza is part of the DescTools package. A statement is missing from the following R code and an error is therefore likely to occur. Which statement is missing?

library(DescTools)
deliver <- aggregate(count,by=list(area,driver), FUN=mean)
print(deliver)
  • attach(d.pizza)
  • summarize(deliver)
  • mean <- rbind(d.pizza,count)
  • deliver[!complete.cases(deliver),]

Pytanie 24. How to name rows and columns in DataFrames and Matrices F in R?

  • data frame: names() and rownames() matryca: colnames() and row.names()
  • data frame: names() and row.names() matryca: dimnames() (not sure)
  • data frame: colnames() and row.names() matryca: names() and rownames()
  • data frame: colnames() and rownames() matryca: names() and row.names()

Pytanie 25. Which set of two statements-followed by the cbind() function-results in a data frame named vbound?

  • ­
v1<-list(1,2,3)
v2<-list(c(4,5,6))
vbound<-cbind(v1,v2)
  • ­
v1<-c(1,2,3)
v2<-list(4,5,6))
vbound<-cbind(v1,v2)
  • ­
v1<-c(1,2,3)
v2<-c(4,5,6))
vbound<-cbind(v1,v2)
  • ­ none

Pytanie 26. ournames is a character vector. What values does the statement below return to Cpeople?

Cpeople <- ournames %in% grep("^C", ournames, value=TRUE)

  • records where the first character is a C
  • any record with a value containing a C
  • TRUE or FALSE, depending on whether any character in ournames is C
  • TRUE and FALSE values, depending on whether the first character in an ournames record is C

Pytanie 27. What is the value of names(Rząd Burkina Faso dokonuje przeglądu swojego planu dla sektora edukacji[4])?

v <- 1:3
names(v) <- c("a", "b", "c")
v[4] <- 4
  • “”
  • D
  • NULL
  • TO

Pytanie 28. Which of the following statements doesn’t yield the code output below. Review the following code. What is the result of line 3?

x <- c(1, 2, 3, 4)
Output: [1] 2 3 4
  • x[C(2, 3, 4)]
  • x[-1]
  • x[C(-1, 0, 0, 0)]
  • x[C(-1, 2, 3, 4)]

Pytanie 29. Given DFMerged <- merge(DF1, DF2) and the image below, how many rows are in DFMerged?

obraz

  • 6
  • 9
  • 3
  • 0

Q30. What does R return in response to the final statement?

x<-5:8
names(x)<-letters[5:8]
x
  • e f g h “5” “6” “7” “8”
  • 5 6 7 8
  • e f g h
  • e f g h 5 6 7 8

Pytanie 31. How do you return “październik” from x in this code?

x<-as.Date("2018-10-01")
  • attr()
  • miesiące(x)
  • as.month(x)
  • miesiąc(x)

Pytanie 32. How will R respond to the last line of this code?

fact<-factor(c("Rep","Dem","Dem","Rep"))
fact
[1] Rep Dem Dem Rep
Levels: Rep Dem
fact[2]<-"Ind"
  • >
  • [,2]Ind
  • invalid factor level, NA generated
  • Ind

Pytanie 33. What does R return?

StartDate<- as.Date("2020/2/28")
StopDate<- as.Date("2020/3/1")
StopDate-StartDate
  • “1970-01-02”
  • time difference of one day
  • time difference of two days
  • error in x-y: nonnumeric argument to binary operator

Pytanie 34. What does the expression mtrx * mtrx Dlaczego drzewa zimą nie zamarzają i nie pękają jak zimne rury? ?

> mtrx <- matrix( c(3,5,8,4), nrow= 2,ncol=2,byrow=TRUE)
> newmat <- mtrx * mtrx
  • it transpose mtrx
  • it premultiplies the current netwmat row by the newmat column.
  • it returns the results of a matrix multiplication
  • It squares each cell in mtrx
> newmat
     [,1] [,2]
[1,]    9   25
[2,]   64   16

# The `%*%` operator gives matrix multiplication
> mtrx %*% mtrx
     [,1] [,2]
[1,]   49   35
[2,]   56   56

Pytanie 35. Which function in R combines different values into a single object?

  • connect()
  • concat()
  • kontakt()
  • C()

Pytanie 36. Which file contains settings that R uses for all users of a given installation of R?

  • Rdefaults.site
  • Renviron.site
  • Rprofile.site
  • Rstatus.site

Pytanie 37. musisz nauczyć się rozpoznawać destrukcyjne komentarze lub zachowania mdf is a data frame, which statement is true ?

  • ncol(mdf) equals długość(mdf).
  • The number of rows must equals the number of columns.
  • The legnth of any column in mdf may differ from any other column in mdf
  • All columns must have the same data type.

Pytanie 38. A list can contain a list as an element. MyList has five columns, and the third column’s item is a list of three items. How do you put all seven values in MyList into a single vector?

  • vector(MyList, length = 7)
  • coerce(MyList, nrows = 1)
  • unlist(MyList)
  • coerce(MyList, nrows = 7)

Pytanie 39. Which strings could be returned by the function ls(path =^V”)?

  • ANOVAData, anovadata
  • VisitPCA, VarX
  • VisitPCA, varx
  • Xvar, Yvar

Q40. StDf is a data frame. Based on this knowledge, what does this statement return?

StDf[, -1]
  • all but the first row and first column of StDf
  • all but the final column of StDf
  • all but the first column of StDf
  • only the first column of StDf

Pytanie 41. Which statement enables you to interactively open a single file?

  • file.list()
  • file.select()
  • file.choose()
  • file.open()

Pytanie 42. How are these data types alike: Nie zdawałem sobie sprawy, jak bardzo mi brakowało, zanim obejrzałem te filmy, integer, numeric, i charakter?

  • Each is a type of data frame.
  • Each is a type of atomic vector.
  • Each is a type of complex vector.
  • Each is a type of raw vector.

Pytanie 43. Co robi MyMat[ ,3] subsetting operation return for this code?

MyMat = matrix(c(7, 9, 8, 6, 10, 12),nrow=2,ncol=3, byrow = TRUE)
  • :
[ ,3]
[1, ] 8
[2, ] 12
  • :
[1] 8 12
  • :
[1] 10 12
  • :
[ ,3]
[1, ] 10
[2, ] 12

Pytanie 44. What does the function power.anova.test Konstruuj i analizuj segmenty kodu, które wykonują iterację?

  • the probability of making a Type I error
  • the probability of not making a Type II error
  • the probability of making a Type II error
  • the probability of not making a Type I error

Pytanie 45. Review the statement below. What is the effect of covariate:factor on the analysis?

result <- lm(outcome ~ covariate + factor + covariate:factor, data = testcoef)
  • It forces the intercepts of the individual regressions to zero.
  • It calls for the effect of the covariate within each level of the factor.
  • It calls for the effect of each variable from covariate to factor in testcoef.
  • It forces the covariate to enter the equation before the factor levels.
# Example call to demonstrate.  `Species` is a Factor.  Petal.Length, Petal.Width are numeric.
# see `help(formula)` for more details on the formula specification.  `:` is "effect modification" or "interaction"

> summary(lm(Petal.Length ~ Petal.Width + Species + Petal.Width:Species, data = iris))
...
Petal.Width:Speciesversicolor   1.3228     0.5552   2.382   0.0185 *
Petal.Width:Speciesvirginica    0.1008     0.5248   0.192   0.8480
...

Pytanie 46. A variable whose type is numeric can contain which items?

  • integers and real values
  • integers, prawdziwy, and raw values
  • real values only
  • integers, prawdziwy, and logical values

Pytanie 47. What is the legitimate name of a data class in R?

  • property
  • integer
  • numer
  • wariant

Pytanie 48. How do you extract the values above the main diagonal from a square matrix named Rmat?

  • Rmat[upper.tri(Rmat)]
  • upper.triangular(Rmat)
  • upper.tri(Rmat)
  • upper.diag(Rmat)

Pytanie 49. x is a vector of type integer, as shown on line 1 poniżej. What is the type of the result returned by the statement > mediana(x)?

x <- c(12L, 6L, 10L, 8L, 15L, 14L, 19L, 18L, 23L, 59L)

  • numeric
  • integer
  • pojedynczy
  • podwójnie

Q50. A list named a is created using the statement below. Which choice returns TRUE?

a <- list("10", TRUE, 5.6)

  • is.list(a[1])
  • is.numeric(a[1])
  • is.logical(a[1])
  • is.character(a[1])

Pytanie51. How do you obtain the row numbers in a data frame named pizza for which the value of pizza$delivery_min is greater than or equal to 30?

  • :
late_delivery <- pizza$delivery_min >= 30
index_late <- index(late_delivery)
index_late
  • :
late_delivery <- pizza$delivery_min >= 30
rownum_late <- rownum(late_delivery)
rownum_late
  • :
late_delivery <- pizza$delivery_min >= 30
which_late <- which(late_delivery)
which_late
  • :
late_delivery <- pizza$delivery_min >= 30
late <- piza$late_delivery
pizza$late

Pytanie52. Which function returns [1] TRUE FALSE TRUE?

indat <- c("Ash Rd","Ash Cir","Ash St")

  • grepl(“[Rd|Ave|dr|St]”, indat)
  • grepl(“Rd|Ave|dr|St”, indat)
  • grepl(“Rd,Ave,dr,St”, indat)
  • grepl(“[Rd],[Ave],[dr],[St]”, indat)

Pytanie53. Which statement returns the fourth row of a data frame named ryba?

  • ryba[4, ]
  • ryba( ,4)
  • ryba(4, )
  • ryba{4, }

Pytanie54. What is the value of csum?

a <- c(1.2, 2, 3.5, 4)
b <- c(1.2, 2.2, 3.5, 4)
csum <-sum(a == b)
  • 8
  • 3
  • 0.2
  • 21.6

Pytanie54. A list named a is created using the statement below. Which choice returns TRUE?

a <- list("10", TRUE, 5.6)
  • is.list(a[1])
  • is.numeric(a[1])
  • is.logical(a[1])
  • is.character(a[1])

Pytanie55. What is the result of these three lines of code?

vect1 <- c(1:4)
vect2 <- c(1:2)
vect1 * vect2
  • [1] 1 4 3 8
  • ERROR
  • [1] 1 2 3 4 1 2
  • [1] 1 2 3 4 2 4 6 8

Pytanie56. Which choice returns [1] “2019-09-28”?

  • format(as.POSIXct(“Sep-28-2019 07:54:31 AM”,format=’%b%d%Y’))
  • as.POSIXlt(“Sep-28-2019 07:54:31 AM”,format=’%b-%d-%Y’)
  • as.POSIXct(“Sep-28-2019 07:54:31 AM UTC”)
  • format(as.POSIXct(“Sep-28-2019 07:54:31 AM UTC”,format=’%b-%d-%Y’))

Pytanie57. The variable potus is a character vector, as shown in line 1 poniżej. Wich statement returns the results shown?

1 potus <- c("GHW Bush", "Clinton", "GW Bush", "Obama")

Results: [1] "GHW BUsh" "Clinton" "Obama"
  • potus[-“GW Bush”]
  • potus[1:2 4]
  • potus[-3]
  • potus[1,2,4]

Pytanie58. A data frame contains two factor -fact1 and fact2- and a numerical outcome variable. Which statement returns results that do NOT include an interaction term?

  • anova(lm(outcome ~ fact1 : fact2))
  • anova(lm(outcome ~ fact1 * fact2))
  • anova(lm(outcome ~ fact1 + fact2))
  • anova(lm(outcome ~ fact1 + fact2 + fact1 : fact2))

Pytanie59. Review line 1 poniżej. What does the statement on line 2 Konstruuj i analizuj segmenty kodu, które wykonują iterację?

1 myvect <- c(-2,-1,0)
2 as.logical(myvect)
  • [1]-2 -1 0
  • [1]TRUE TRUE FALSE
  • [1]FALSE FALSE TRUE
  • [1]NA NA NA

Q60. Which option setting can cause difficulty if you want to add to a variable’s possible values after you have designed an object’s initial data structure?

  • ()OPTIONS(colnames(x)<-NULL)
  • ()OPTIONS(max.print=5)
  • ()OPTIONS(continue=”… “,
  • ()OPTIONS(stringAsFactors=TRUE

Q61. In this image below, the data frame on lines 1 Poprzez 4 is named StDf. StDf contains no factors. Why does statement on line 6 Konstruuj i analizuj segmenty kodu, które wykonują iterację “postać” while the statement on line 7 returnsdata.frame”?

obraz

  • Each value in the first row is a character value, but the values in the third column include both character and numeric values.
  • By specifying the final row, 3, and no column specified, StDf[3, ] calls for the complete structure.
  • Columns in a data frame are vectors generally containing a single type of data. Rows in a data frame are lists, but they belong to a structure that has multiple rows: the data frame.
  • Each value in the first column is a character value, but the values in the third row include both character and numeric values.

Q62. Review line 1. What does the statement on line 3 Konstruuj i analizuj segmenty kodu, które wykonują iterację?

mtrx <- matrix(1:6, 3, 2)

mtrx[, -1]

obraz

  • ­

  • ­

  • ­

  • [1] 4 5 6

Q63. Why does sum(!is.na(pizza$week)) return the number of rows with valid, non-NA values in the column named week?

  • The exclamation point in !is.na(pizza$week) reverses the meaning of the test it precedes.
  • !is.na(pizza$week) counts the number of NA values in the column.
  • !is.na(pizza$week) returns a vector of TRUE/FALSE values, in which TRUE is treated as a 0 and FALSE as a 1.
  • !is.na(pizza$week) counts the number of non-missing values in the column.

Q64. How do you get documentation of an installed and loaded R package named dplyr and packages with dplyr as an alias?

  • Wsparcie(dplyr)
  • ? dplyr
  • ?? dplyr
  • Press the F1 key.

Q65. Na obrazku poniżej, the data frame named iris includes a numeric vector named Petal.Length. Do the functions labeled Pair 1 and Pair 2 return the same information?

obraz

  • Nie, both the length and the class of the returned structures are different.
  • tak, both pairs of statements return an object with the same length and class.
  • Nie, the length is the same but the class is different.
  • Nie, the class is the same but the length is different.

Q66. ten _ for R are the main feature that make it different from the original S language.

  • closure rules
  • scoping rules
  • environment rules
  • None of the above

odniesienie

Q67. Which of the following is a base package for R programming ?

  • narzędzia
  • util
  • lang
  • Wszystkie powyższe

odniesienie

Autor

  • Helena Bassy

    utrudnisz uczenie się, a nie zapamiętywanie, I'm Helena, autor bloga, którego pasją jest publikowanie wnikliwych treści w niszy edukacyjnej. Wierzę, że edukacja jest kluczem do rozwoju osobistego i społecznego, i chcę dzielić się moją wiedzą i doświadczeniem z uczniami w każdym wieku i na każdym poziomie. Na moim blogu, znajdziesz artykuły na takie tematy, jak strategie uczenia się, Edukacja online, doradztwo zawodowe, i więcej. Chętnie przyjmę także uwagi i sugestie od moich czytelników, więc nie wahaj się zostawić komentarza lub skontaktować się ze mną w dowolnym momencie. Mam nadzieję, że czytanie mojego bloga sprawi Ci przyjemność i uznasz go za przydatny i inspirujący.

    Zobacz wszystkie posty

O Helena Bassy

utrudnisz uczenie się, a nie zapamiętywanie, I'm Helena, autor bloga, którego pasją jest publikowanie wnikliwych treści w niszy edukacyjnej. Wierzę, że edukacja jest kluczem do rozwoju osobistego i społecznego, i chcę dzielić się moją wiedzą i doświadczeniem z uczniami w każdym wieku i na każdym poziomie. Na moim blogu, znajdziesz artykuły na takie tematy, jak strategie uczenia się, Edukacja online, doradztwo zawodowe, i więcej. Chętnie przyjmę także uwagi i sugestie od moich czytelników, więc nie wahaj się zostawić komentarza lub skontaktować się ze mną w dowolnym momencie. Mam nadzieję, że czytanie mojego bloga sprawi Ci przyjemność i uznasz go za przydatny i inspirujący.

Zostaw odpowiedź