Zarejestruj się teraz

Zaloguj sie

Zgubione hasło

Zgubiłeś swoje hasło? Wprowadź swój adres e-mail. Otrzymasz link i utworzysz nowe hasło e-mailem.

Dodaj post

Musisz się zalogować, aby dodać post .

Dodaj pytanie

Aby zadać pytanie, musisz się zalogować.

Zaloguj sie

Zarejestruj się teraz

Witamy na stronie Scholarsark.com! Twoja rejestracja zapewni Ci dostęp do większej liczby funkcji tej platformy. Możesz zadawać pytania, wnosić wkład lub udzielać odpowiedzi, przeglądaj profile innych użytkowników i wiele więcej. Zarejestruj się teraz!

Practical Machine Learning: Projekty świata rzeczywistego,Studium przypadku

Practical Machine Learning: Projekty świata rzeczywistego,Studium przypadku

Cena: $59.99

W tym samouczku, you will discover how to develop and evaluate a model for the imbalanced adult income classification dataset.

After completing this tutorial, you will know:

  • How to load and explore the dataset and generate ideas for data preparation and model selection.

  • How to systematically evaluate a suite of machine learning models with a robust test harness.

  • How to fit a final model and use it to predict class labels for specific cases.

Many binary classification tasks do not have an equal number of examples from each class, np. the class distribution is skewed or imbalanced.

A popular example is the adult income dataset that involves predicting personal income levels as above or below $50,000 per year based on personal details such as relationship and education level. There are many more cases of incomes less than $50K than above $50K, although the skew is not severe.

Autor

Zostaw odpowiedź